
 1

Message Passing
Concurrency

in Erlang
Joe Armstrong

 2

Observation B: Recently, I have been meeting
a lot of Erlang people, and I sense clearly that
they have this enviable ability to think
intuitively about parallel programming. It
corresponds somewhat to the way we "object
heads" think intuitively about classes and
objects - just in terms of processes.

Modeling Concurrency with Actors in Java
- Lessons learned from Erjang

Kresten Krab Thorup, Hacker, CTO of Trifork

Background

 3

 4

How do we
think about

parallel
programs?

 5

Using the wrong
abstractions makes life

artificially difficult

XLVIII x
XCIII
 =
MMMMCDLXIV

 7

From: Alan Kay <alank@wdi.disney.com>
 Date: 1998-10-10 07:39:40 +0200
 To: squeak@cs.uiuc.edu
 Subject: Re: prototypes vs classes was: Re: Sun's HotSpot

 Folks --

 Just a gentle reminder that I took some pains at the last
OOPSLA to try to remind everyone that Smalltalk is not only
NOT its syntax or the class library, it is not even about classes.
I'm sorry that I long ago coined the term "objects" for this topic
because it gets many people to focus on the lesser idea.

The big idea is "messaging" ...

The Big Idea is Messaging

http://c2.com/cgi/wiki?HotSpot

 8

It's all about
messages

A ! B

 9

Fault-
tolerance

10

Shared memory

11

Oooooooooch
Your program
crashes in
the critical region
having corrupted
memory

 12

Shared memory and
fault tolerance is

incredibly difficult
So forbid shared

memory

 13

Basic fault-tolerance

Do the work
Save

recovery
state

Computer 1 Computer 2

Messages

Errors

 14

Remote error recovery

Do the work Save
recovery

state

Computer 1 Computer 2

Error

If machine 1
crashes machine
2 must take over

Error appears to come
from machine 1 – in fact a
ping monitor on machine 2
detected that machine 1
had failed.

 15

Message-
passing

Concurrency

 16

How do we
think about

parallel
programs?

 17

Think about?
● Messages (what's in a message?)
● Who knows what?
● Protocols – what are the order of the

messages
● What are the processes?

 18

Design
● Identify the processes
● Identify the message channels
● Name the channels
● Name the messages – what are the messages,

what's in the messages?
● Specify the message content
● Specify the message order

 19

Q: What can you do with
messages?

A: Everything?

 20

Fun with Erlang
● Send
● Receive
● Catch
● Function Application

 21

Send and receive
● Send a message to the mailbox of a process

Pid ! Message
● Waits for a message that matches a pattern

in the mailbox

receive

 Pattern ->

 Action

end

 22

Servers

 23

Questions
● How do we find the server?
● How do we encode the messages?
● What happens if things go wrong?
● How do we specify the order of messages?

 24

Finding the server

213.45.67.23 ! hello

Or

“www.some.host” ! hello

+

DNS

Pid ! Hello

Or

some_name ! Hello

And

The process registry

Ipv4 - TCP/IP Erlang

http://www.some.host/

 25

Encoding the message

GET /intro.html HTTP/1.1
Accept: text/html, application:xhtml+xml
...
HTTP 1.1 200 OK
...

Pid ! hello

sends

<<131,100,0,5,104,101,108,108,111>>

About 4894 Defined
TCP protocols [1]

Erlang
One - Protocol

[1] IANA (Internet Assigned Numbers Authority)
 “Well known” Ports

 26

What happens if things go wrong

Socket Closed
Or

Hangs

receive
 {'EXIT', Pid, Why} ->
 ... fix it ...
end

Ipv4 - TCP/IP Erlang

 27

An Erlang Server

loop(...) ->
 receive
 {From, Request} ->
 Response = F(Request),
 From ! {self(), Response},
 loop(...)
 end.

I'll rewrite this in lot's of different ways

 28

PING

Pid ! {self(), ping},
receive
 {Pid, pong} ->
 ... joy ...
 end

loop() ->
 receive
 {From, ping} ->
 From ! {self(), pong},
 loop()
end.

Client Server

 29

Counter

Pid ! {self(), bump},
receive
 {Pid, N} ->
 ...
 end,

counter(N) ->
 receive
 {From, bump} ->
 From ! {self(), N+1},
 counter(N+1)
end.

Client Server

 30

Generalise the counter

counter(N) ->
 receive
 {From, bump} ->
 From ! {self(), N+1},
 counter(N+1)
end.

counter() ->
 loop(0, fun counter/2).

loop(State, F) ->
 receive
 {From, X} ->
 {Reply, State1} = F(X, State),
 From ! {self(), Reply},
 loop(State1, F)
 end.

counter(bump, N) ->
 {N+1, N+1}.

Old
New

 31

Why
generalize?

 32

Because we can have some fun

● Send code to the server
● Send data to the server
● Add code upgrade
● Add transactions

 33

Send the code to the server

Pid ! {self(),
 fun counter/2},
receive
 {Pid, N} ->
 ...
 End.

counter(N) ->
 {N+1, N+1}.

loop(State) ->
 receive
 {From, F} ->
 {Reply, State1} = F(State),
 From ! {self(), Reply},
 loop(State1)
end.

Client
Server

The sever maintains state –
we send code to the server
in a message. There is no
code on the server

 34

Send the state to the server

counter() ->
 loop(fun counter/1).

loop(F) ->
 receive
 {From, State} ->
 Reply = F(State),
 From ! {self(), Reply},
 loop(F)
end.

counter(N) ->
 N+1.

Pid ! {self(), 10},
receive
 {Pid, N} ->

 end.

The server has no
data. It stores a
function that is
applied to data that
comes from the client

 35

Code Upgrade

rpc(Pid, N) ->
 Pid ! {self(), Q},
 receive
 {Pid, R} -> R
 End.

triple(X) -> X*X*X.

> rpc(Pid, 2).
4
> Pid ! {upgrade,fun triple/1}.
...
> rpc(Pid, 2)
8

start() ->
 loop(fun double/1).

loop(F) ->
 receive
 {upgrade, F1} ->
 loop(F1);
 {From, X} ->
 Reply = F(X),
 From ! {self(), Reply},
 loop(F)
 end.

double(X) -> 2*X.

 36

Code Upgrade with state

start() ->
 loop(State, fun doit/2).

loop(State, F) ->
 receive
 {upgrade, F1} ->
 loop(State, F1);
 {From, X} ->
 {Reply, State1} = F(X, State),
 From ! {self(), Reply},
 loop(State1, F)
 end.

doit(X, State) -> {Reply, State1}.

 37

Code Upgrade with state upgrade

start() ->
 loop(State, fun doit/2).

loop(State, F) ->
 receive
 {upgrade, F1, F2} ->
 State1 = F2(State),
 loop(State1, F1);
 {From, X} ->
 {Reply, State1} = F(X, State),
 From ! {self(), Reply},
 loop(State1, F)
 end.

doit(X, State) -> {Reply, State1}.

 38

Were you watching carefully?
● loop() - (PING)
● loop(State, Fun) – stateful server
● loop(State) – mobile code
● loop(Fun) – mobile data

● Can we generalize the generalizations?

 39

The Universal Server

wait() ->
 receive
 {become, F} ->
 F()
 end.

 40

So let's let the client send the
server code to the server

Pid ! {become, fun() -> loop(fun(Id) -> Id end) end}.

 loop(F) ->
 receive
 {upgrade, F1} ->
 loop(F1);
 {From, X} ->
 Reply = F(X),
 From ! {self(), Reply},
 loop(F)
 end.

 41

What have we done?

● TCP/IP
● 4894 ad hock protocols
● Implement a server for
 ONE of them (repeat 4894
 Times)

● Allow plugins
 (example Apache)

● One protocol
● One Generic Server
● The application (say an HTTP
 server is the plugin)

Traditional Erlang

 42

Observations
● Conventionally servers mainatain state
● Conventionally we move the data to the

computation (example, mysql, the data-base
has the data, the data is moved to the client
where the computation is performed)

● We can move the data, or the computation,
whichever is most effective

● No locks – or classes – just messages

 43

Behaviours
● Collect the powerful generalisations
● Give them names
● Document their usage

(write a few millions of line of code that use
them to see if they work – they do)

 44

6 Behaviors
● gen_server
● gen_fsm
● supervisor
● gen_event
● aspplication
● release

 45

Where does
the

power
come from?

 46

● Dynamic (safe) types
binary_to_term/term_to_binary

● One encoding (slide + 2)
● Late Binding
● Higher order

Functions are data – can send functions in messages
● Pure MP
● Easy to invent abstractions
● No destructive assignment (slide + 3)

 47

One
Encoding

 48

Email + FTP (HTTP) + IM
(the power of one protocol)

loop() ->
 receive
 {email, _From, _Subject, _Text} = Email} ->
 {ok, S} = file:open("inbox", [write,append]),
 io:write(S, Email),
 file:close(S);
 {im, From, Text} ->
 io:format("Msg (~s): ~s~n",[From, Text]);
 {Pid, {get, File}} ->
 Pid ! {self(), file:read_file(File)}
 end,
 loop().

 49

Now let's add transactions

 loop(State, F) ->
 receive
 {From, X} ->
 case (catch F(X, State)) of
 {'EXIT', Why} ->
 From ! {self(), {error, Why}},
 loop(State, F);
 {Reply, State1} ->
 From ! {self(), {ok, Reply}},
 loop(State1, F)
 end.

 50

Client server is only one pattern
there are many more

A BA C
{A, Msg}

{replyTo, A,
 ReplyAs, B, Msg}

{B, Response}

 51

A ! B
in

more detail

 52

IMPORTANT

A ! B
enforces isolation
must be asynchronous

 53

A ! B glues things together

 $ find .. | grep “module” | uniqu | wc

+ each component can be in a
different language
- Text flows across the boundaries =
lots of parsing/formatting

The output of your
program might one
day be the input to
somebody elses
Program

TEXT TEXT TEXT

Pid ! Msg | receive Pattern -> Action end

Structured term

 54

A ! B makes distribution posible

A | B | C

A B C
socket socket

 55

A ! B is great
but

what is A?

 56

A is ...
● A process
● A mailbox

 57

RFC 196 (July 1971)
A mail box, as we see it,
is simply a sequential file to
Which messages and documents
are appended, separated by
an appropriate
site dependent code.

 RFC 821 (Postel) (August 1982)

 S: MAIL FROM:<Smith@Alpha.ARPA>
 R: 250 OK

The mailbox

mailto:Smith@Alpha.ARPA

 58

Mailboxes
● Send and receive is decoupled
● Location transparent (send to a name not a

location)
● Messages stay in mailbox until read
● Reliable/Secure/Order preserving?

 59

Message passing
architectures

are everywhere

 60

tcpmux compressnet rje echo discard systat daytime qotd msp chargen ftp-data ftp ssh telnet smtp
nsw-fe msg-icp msg-auth dsp time rap rlp graphics name nicname mpm-flags mpm mpm-snd ni-ftp
auditd tacacs re-mail-ck la-maint xns-time dns xns-ch isi-gl xns-auth xns-mail ni-mail acas whois++
covia tacacs-ds sql*net bootps bootpc tftp gopher netrjs-1 netrjs-2 netrjs-3 netrjs-4 deos vettcp finger
http hosts2-ns xfer mit-ml-dev ctf mfcobol kerberos su-mit-tg dnsix mit-dov npp dcp objcall supdup
dixie swift-rvf tacnews metagram newacct hostname iso-tsap gppitnp acr-nema csnet-ns 3com-
tsmux rtelnet snagas pop2 pop3 sunrpc mcidas ident audionews sftp ansanotify uucp-path sqlserv
nntp cfdptkt erpc smakynet ntp ansatrader locus-map nxedit locus-con gss-xlicen pwdgen cisco-fna
cisco-tna cisco-sys statsrv ingres-net epmap profile netbios-ns netbios-dgm netbios-ssn emfis-data
emfis-cntl bl-idm imap uma uaac iso-tp0 iso-ip jargon aed-512 sql-net hems bftp sgmp netsc-prod
netsc-dev sqlsrv knet-cmp pcmail-srv nss-routing sgmp-traps snmp snmptrap cmip-man cmip-agent
xns-courier s-net namp rsvd send print-srv multiplex cl/1 xyplex-mux mailq vmnet genrad-mux xdmcp
nextstep bgp ris unify audit ocbinder ocserver remote-kis kis aci mumps qft gacp prospero osu-nms
srmp irc dn6-nlm-aud dn6-smm-red dls dls-mon smux src at-rtmp at-nbp at-3 at-echo at-5 at-zis at-7
at-8 qmtp z39.50 914c/g anet ipx vmpwscs softpc CAIlic dbase mpp uarps imap3 fln-spx rsh-spx cdc
masqdialer direct sur-meas inbusiness link dsp3270 subntbcst_tftp bhfhs set yak-chat esro-gen
openport nsiiops arcisdms hdap bgmp x-bone-ctl sst td-service td-replica http-mgmt personal-link
cableport-ax rescap corerjd fxp-1 k-block novastorbakcup entrusttime bhmds asip-webadmin vslmp
magenta-logic opalis-robot dpsi decauth zannet pkix-timestamp ptp-event ptp-general pip rtsps texar
pdap pawserv zserv fatserv csi-sgwp mftp matip-type-a bhoetty bhoedap4 ndsauth bh611 datex-asn
cloanto-net-1 bhevent shrinkwrap nsrmp scoi2odialog semantix srssend rsvp_tunnel aurora-cmgr dtk
odmr mortgageware qbikgdp rpc2portmap codaauth2 clearcase ulistproc legent-1 legent-2 hassle
nip tnETOS dsETOS is99c is99s hp-collector hp-managed-node hp-alarm-mgr arns ibm-app asa
aurp unidata-ldm ldap uis synotics-relay synotics-broker meta5 embl-ndt netcp netware-ip mptn
kryptolan iso-tsap-c2 work-sol ups genie decap nced ncld imsp timbuktu prm-sm prm-nm
decladebug rmt synoptics-trap smsp infoseek bnet silverplatter onmux hyper-g ariel1 smpte ariel2
ariel3 opc-job-start opc-job-track icad-el smartsdp svrloc ocs_cmu ocs_amu utmpsd utmpcd iasd
nnsp mobileip-agent mobilip-mn dna-cml comscm dsfgw dasp sgcp decvms-sysmgt cvc_hostd https
snpp microsoft-ds ddm-rdb ddm-dfm ddm-ssl as-servermap tserver sfs-smp-net sfs-config
creativeserver contentserver creativepartnr macon-tcp scohelp appleqtc ampr-rcmd skronk
datasurfsrv datasurfsrvsec alpes kpasswd urd digital-vrc mylex-mapd photuris rcp scx-proxy mondex
ljk-login hybrid-pop tn-tl-w1 tcpnethaspsrv tn-tl-fd1 ss7ns spsc iafserver iafdbase ph bgs-nsi ulpnet
integra-sme powerburst avian saft gss-http nest-protocol

4894

 61

MPC is great
● Shared state + Errors is impossibly difficult

to understand
● Pure messaging is built into the fabric of the

universe – messages are bundles of photons
● Message passing is the most common way to

program distributed systems

but we need a substrate ...

 62

Message passing substrates
● Persistent named job queues
● If you want a job done you send a message

to a named queue. It will eventually be done,
and you will get a message back

● Decouples processing from the job queue
● All data needed to do the job is in the

message itself

 63

Some Message passing substrates
● Erlang

Very fast – in memory – volatile

● MPI

Very fast - Industry standard message passing library

● KILIM

Message passing library for JAVA

● Email

Slow – non-volatile – no guarantees

● AMQP

Medium – reliable storage - guarantees

 64

Benefits
● Same model works for programming in-the-

small and in-the-large
● Functional – Output depends only upon the

inputs
● Scalable
● Reliable

 65

The Erlang Experience
● Efficient
● Scales for very large systems. Copying overhead

“not a problem”
● High reliability is possible
● Multi-core ready (here-and-now)
● Works in large S/W projects (> 1 million lines of

code)
● Used in many “core” Internet applications
● Plays well with other languages (but not in memory)

 66

Not
the End

 67

What's
Missing?

 68

It's all about protocols
● 4894 TCP protocols – each one has it's own

syntax
● Need a type system and “protocol types” -

something like CSP, Pi calculus, UBF, ...
● We have no good way of describing protocols

 69

The
End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

