
Eu
gè

ne
 D

el
ac

ro
ix

, H
am

le
t a

nd
 H

or
at

io
 in

 th
e

G
ra

ve
ya

rd

Modeling Concurrency with Actors

Kresten Krab Thorup, @drkrab, Trifork

A Journey into Erlang Land
Functional and Interactive concurrency

 Coordination is the new imperative

 Develop an intuition for concurrency

 State encapsulation is key

 Cheap processes blows your mind

What I will Tell You The Free Lunch is Over

 D
r.

D
ob

b'
s

Jo
ur

na
l,

30
(3

),
M

ar
ch

 2
00

5

•

 But why is
 concurrency
 in Java so hard? TTHREADS

& LOCKS
AHEAD

SI
N

C
E

JA
VA

 1
99

6

Java was designed
 in the client-server age

Synchronous
 coordination
 prevailed

NO

functional style
map-reduce
data parallel

YES

interactive style
integration

actors

Coordinate?

Photo: Vlado Bennett

LockThread

Variable

If you think you
need threads and
locks, think again.

TTHREADS
& LOCKS

AHEAD

SI
N

C
E

JA
VA

 1
99

6

ACT II: ACTORS

co
m

pl
ex

ity
 a

bi
lit

y performance / scaleabilityunderstandability

object-oriented
modeling

actor
modeling?

dynamic
virtual machines

multi-core
hardware

Portable C / Posix

Linux, MacOS X, Windows, ...

BEAM Virtual Machine

Erlang/OTP Framework

Erlang Programs

The Erlang Stack...

Java Virtual Machine

Linux, MacOS X, Windows, ...

ERJANG

Erlang Programs

The Erjang Stack...

Erlang/OTP Framework

Let’s see it in action...

Java did a lot of
good compared
to C and C++

! if (l)
! erts_destroy_link(l);

! BIF_RET(am_true);
 }
 else if (is_external_port(BIF_ARG_1)
! && external_port_dist_entry(BIF_ARG_1) == erts_this_dist_entry) {
! BIF_RET(am_true);
 }

 if (is_not_pid(BIF_ARG_1))
! BIF_ERROR(BIF_P, BADARG);

 if (is_external_pid(BIF_ARG_1)) {
! ErtsDistLinkData dld;
! int code;
! ErtsDSigData dsd;
! /* Blind removal, we might have trapped or anything, this leaves
! us in a state where monitors might be inconsistent, but the dist
! code should take care of it. */
! erts_smp_proc_lock(BIF_P, ERTS_PROC_LOCK_LINK|ERTS_PROC_LOCK_STATUS);
#ifdef ERTS_SMP
! if (ERTS_PROC_PENDING_EXIT(BIF_P))
! goto handle_pending_exit;
#endif
! l = erts_remove_link(&BIF_P->nlinks,BIF_ARG_1);

! erts_smp_proc_unlock(BIF_P,
! ! ! ERTS_PROC_LOCK_LINK|ERTS_PROC_LOCK_STATUS);

! if (l)
! erts_destroy_link(l);

! dep = external_pid_dist_entry(BIF_ARG_1);
! if (dep == erts_this_dist_entry) {
! BIF_RET(am_true);
! }

! code = erts_dsig_prepare(&dsd, dep, BIF_P, ERTS_DSP_NO_LOCK, 0);
! switch (code) {
! case ERTS_DSIG_PREP_NOT_ALIVE:
! case ERTS_DSIG_PREP_NOT_CONNECTED:
#if 1
! BIF_RET(am_true);
#else
! /*
! * This is how we used to do it, but the link is obviously not
! * active, so I see no point in setting up a connection.
! * /Rickard
! */
! BIF_TRAP1(dunlink_trap, BIF_P, BIF_ARG_1);
#endif

! case ERTS_DSIG_PREP_CONNECTED:
! erts_remove_dist_link(&dld, BIF_P->id, BIF_ARG_1, dep);
! code = erts_dsig_send_unlink(&dsd, BIF_P->id, BIF_ARG_1);
! erts_destroy_dist_link(&dld);
! if (code == ERTS_DSIG_SEND_YIELD)
! ! ERTS_BIF_YIELD_RETURN(BIF_P, am_true);
! BIF_RET(am_true);

!
! @BIF
! public static EObject unlink(EProc self, EObject pid) {
! ! EHandle h = EHandle.cast(pid);
! ! if (h != null) {
! ! ! self.unlink(h);
! ! }
! ! return pid;
! }
!

C to Java

Error Handling
Memory Management

...and many other kinds of messes

Java to Erlang

Coordination
Fault-Tolerance

...and many other kinds of messes

ht
tp

://
w

w
w

.y
ou

tu
be

.c
om

/w
at

ch
?v

=
N

X
Lu

yZ
M

EZ
bk

message
behaviorGuard/

Queue

actorclient

state
shared

immutable
values

FRAMEWORKS

Kilim
Scala Actors
ActorFoundry
JavAct

LANGUAGES

Erlang
E Language
Axum

STATE ENCAPSULATION

SAFE MESSAGING

REAL PROCESSES

object semaphore {
 class SemaphoreActor() extends Actor {
 ...
 def enter() {
 if (num < MAX) {
 // critical section
 num = num + 1; }}}

def main(args : Array[String]) : Unit = {
 var gate = new SemaphoreActor()
 gate.start; gate ! ”enter”
 gate.enter }}

State encapsulation

THREADS

Blocking is expensive

Choose: Blocking or
 non-Blocking
 interactions

PROCESSES

Blocking is cheap

Eat your cake and
 have it too.

Design impact Performance

K
ar

m
an

i,
Sh

al
i, A

gh
a;

PP
PJ

’0
9

K
ar

m
an

i,
Sh

al
i, A

gh
a;

PP
PJ

’0
9

5.3 Zero-copy messaging on shared memory
platforms

We profile the execution to identify further performance
bottlenecks. A faithful implementation of the actor message-
passing semantics in Actor Foundry v0.1.14 means that mes-
sage contents are deep-copied using Java’s Serialization and
Deserialization mechanism, even for immutable types. It
turns out that deep copying of message contents remains the
biggest bottleneck. Figure 9 compares the overhead of deep
copying versus that of sending message contents by reference
for the Threadring benchmark. Note that in Threadring,
the message content is an integer (token), which is an im-
mutable type and can be safely shared between actors. We
disable deep-copying for some known immutable types. This
brings down the running time of Threadring to 30s.

Figure 9: Graph showing the cost of sending mes-
sages in ActorFoundry by reference versus by mak-
ing a deep copy.

5.4 Fair Scheduling
In order to guarantee scheduling fairness, we modify the

scheduler described earlier to include a monitoring thread.
At regular intervals, the monitoring threads checks whether
the system has made “progress”. A system is said to have
made progress if any of the worker threads have scheduled
an actor from the schedule queue in the preceding inter-
val. If the monitoring thread does not “observe” any system
progress and the schedule queue has actors waiting to be
scheduled, it spawns a new JVM thread. This lazy thread
creation mechanism ensures that enabled actors are not per-
manently starved.

There are some trade-offs in lazy thread creation. If the
duration between observations is too small and actors carry
out relatively coarse-grained computations, the monitoring
thread may incorrectly observe that no progress has been
made. In the worst case, this approach may result in some
extra native threads. An unfortunate worst case is when the
number of native threads exceeds what can fit in the avail-
able JVM heap size, resulting in a crash. (This possibility
could be prevented by checking the heap size before creating
a thread). Moreover, frequently checking progress incurs a
higher overhead. On the other hand, a large gap between

observations may decrease the responsiveness of an appli-
cation in the presence of non-cooperative actors. In other
words, there is a trade-off between responsiveness, overhead
and precision. In our current implementation, the monitor-
ing thread wakes up every 250ms to make observations.

We implemented another small benchmark called Cha-
meneos-redux [42]. Chameneos-redux comprises of two sets
of concurrent entities called Chameneos and another con-
current entity called Broker. The first set contains three
Chameneos while the second set contains ten. Initially each
Chameneos in the first set sends a message to the Broker.
The Broker provides match-making service by picking two
random Chameneos and sending each of them the other’s
information. After a match, the Chameneos send another
message to the Broker and so on. The Broker is required
to complete six million matches, after which it polls each
Chameneos for total individual matches. At the end, the
Broker prints the sum of matches across all Chameneos (in
this case, twelve million). After the first round, the same
interaction occurs for the second set which has ten Chame-
neos.

We compare the overhead of fairness for Threadring, Cha-
meneos - redux and a näıve implementation of fibonacci.
These benchmarks consist of cooperative actors only. Fig-
ure 10 shows that the modified (fair) scheduler incurs negli-
gible overhead for the three benchmarks.

Figure 10: Overhead of Fairness for (a) Threadring
(b) Chameneos-redux (c) Näıve fibonacci calculator

5.5 Performance
Figure 11 compares the performance of Threadring bench-

mark written for an optimized implementation of the Ac-
torFoundry (v1.0) with its performance in Kilim, Scala and
Jetlang. We do not include SALSA and Actor Architecture
as their performance is almost an order of magnitude worse.
We also include numbers for Erlang which currently holds
the undisputed position of being the most widely used Ac-
tor language. Figure 12 provides a similar comparison for
Chameneos − redux benchmark.

Observe that Kilim outperforms the rest (including Er-
lang) for both benchmarks, since the framework provides
light-weight actors and basic message passing support only.
The programming model is low-level as the programmer has
to directly deal with mailboxes, and as noted in Table 1, 2,
it does not provide standard Actor semantics and common
programming abstractions. This allows Kilim to avoid the
costs associated with providing these features.

Note that ActorFoundry’s performance is quite compara-
ble to the other frameworks. This is despite the fact that Ac-
torFoundry v1.0 preserves encapsulation, fairness, location
transparency and mobility. We believe that further signif-

18

Cost of Safe Messaging

122 S. Srinivasan and A. Mycroft

!

"!!

#!!!

#"!!

$!!!

$"!!

! "!!!! #!!!!! #"!!!! $!!!!!

%&'()*

+,',-

(a) Creation and Destruction

!

"!!!

#!!!

$!!!

%!!!

&!!!!

&"!!!

&#!!!

! &!!! "!!! '!!!

()*+,-

./*/0

(b) Messaging

Fig. 11. Erlang vs. Kilim times. X-axis: n actors (n2 messages), Y-axis: Time in ms
(lower is better).

Kilim’s creation penalty is negligible (200,000 actors in 578ms, a rate of 350KHz),
and scaling is linear. We were unable to determine the reason for the knee in the
Erlang curve.

Messaging Performance. The second test (Fig. 11(b)) has n actors exchanging n2

messages with one another. This tests messaging performance and the ability to
make use of multiple processing elements (cores or processors). Kilim’s messaging
is fast (9M+ messages in 0.54 µ sec, which includes context-switching time) and
scales linearly.

Exploiting parallelism. The dual-core Pentium platform offered no tangible im-
provement (a slight decrease if anything) by running more than one thread with
different kinds of schedulers (all threads managed by one scheduler vs. indepen-
dent schedulers). We tried the messaging performance experiment on a Sun Fire
T2000 machine with 32G total memory, eight cores on one chip and four hard-
ware threads per core. We compared the system running with one thread vs.
ten. Fig. 12 demonstrates the improvement afforded by real parallelism. Note
also that the overall performance in this case is limited by the slower CPUs
running at 1.4 GHz.

Miscellaneous numbers. We benchmarked against standard Java threads, RMI
objects and Scala (2.6.1-RC1) (within one JVM instance). We do not include
these numbers because we found all of them to be considerably slower: a simple
binary ping-pong test with two objects bouncing a message back and forth has
Kilim 10x faster than Scala’s Actor framework [22] (even with the lighter-weight
react mechanism), 5x faster than threads with Java’s Pipe*Stream and 100x
faster than RMI between collocated objects (RMI always serialises its messages,
even if the parameters are non-referential types). Larger scales only worsened
the performance gap.

Interpreting the results. One cannot set too much store by micro-benchmarks
against a run-time as robust as that of Erlang. We are writing real-world appli-
cations to properly evaluate issues such as scheduling fairness, cache locality and

Kilim vs. Erlang

Sr
in

iv
as

an
 &

 M
yc

ro
ft

, E
C

O
O

P’
08

Erjang vs. Erlang Erjang vs. Erlang

Actor

Anthropomorphic Programming Anthropomorphic Programming

Secretary

Manager

Worker

Courier Manager

Morven Gentleman, SP&E 1981; Thomas & Barry, JOT 2004.

Hierachical Organizations

Supervisor

Supervisor

Server

Supervisor

ServerServer

I'm sorry that I long ago coined the term
"objects" for this ... because it gets
many people to focus on the lesser idea.

The big idea is "messaging" -- that is
what the kernel of Smalltalk/Squeak is
all about (and it's something that was
never quite completed in our
Xerox PARC phase).

Alan Kay

Functional and Interactive concurrency

 Coordination is the new imperative

 Develop an intuition for concurrency

 State encapsulation is key

 Cheap processes blows your mind

What I told You

If you understood in
1990 the impact

objects would have;
what would you

have done?

Now that you
understand the

impact of actors;
what will you do?

