
QCon London 2010 | Mark Little1

TITLE SLIDE: HEADLINE

Presenter

name
Title, Red Hat
Date

Transactions: Over used or
just misunderstood?

Mark Little

QCon London 2010 | Mark Little2

Overview

● Transaction fundamentals
● What is a transaction?
● ACID properties
● Recovery (and why you should care!)

● Why people turn away from transactions
● Why you should not try to roll your own!
● Pseudo transactions and their friends
● Compensating transactions
● When to use transactions and when not to use them

QCon London 2010 | Mark Little3

What is a transaction?
● “Transaction” is an overloaded term
● Mechanistic aid to achieving correctness
● Provides an “all-or-nothing” property to work that is

conducted within its scope
● Even in the presence of failures

● Ensures that shared resources are protected from
multiple users

● Complexity is hidden by the transaction system

QCon London 2010 | Mark Little4

ACID Properties

•Atomicity
•Consistency
• Isolation
•Durability

QCon London 2010 | Mark Little5

Atomicity

● Within the scope of a transaction
– all changes occur together OR no changes occur

• Atomicity is the responsibility of the Transaction
Manager

● For example - a money transfer
– debit removes funds
– credit add funds
– no funds are lost!

QCon London 2010 | Mark Little6

Two-phase commit

● Required when there are more than one resource
managers (RM) in a transaction

● Managed by the transaction manager (TM)
● Uses a familiar, standard technique:

– marriage ceremony - Do you? I do. I now pronounce ..
● Two - phase process

– voting phase - can you do it?
• Attempt to reach a common decision

– action phase - if all vote yes, then do it.
• Implement the decision

QCon London 2010 | Mark Little7

Hmmm
Do you ..?

Yes

QCon London 2010 | Mark Little8

The “ins and outs” of Commit

• Most descriptions of the two phase commit protocol focus on
the mechanism for achieving consensus
● voting process managed by a transaction coordinator
● first phase allows resource managers to checkpoint their work with

the intention to commit and report whether that checkpoint was
successful

● the resource manager is in doubt or uncertain, a state that will be
maintained indefinitely until the coordinator communicates an
outcome

● coordinator aggregates the responses of the resource managers and if
all resource managers have voted to commit, issues a commit
command to each. Otherwise, it issues the rollback command.

QCon London 2010 | Mark Little9

Consensus is not enough

• Voting, by itself, is not sufficient to guarantee correctness in
the presence of failures

• Coordinator must
● maintain a transaction log that may be used to reconstruct the state

prior to start of transaction
● be able to to communicate the resolution strategy to each of the

participants
• At times coordinator may need to contact resource managers

directly
● Some variations of protocol require resource managers to contact

coordinator
• Two-phase protocol alone does not provide ACID

guarantees!

QCon London 2010 | Mark Little10

Heuristics

● Two-phase commit protocol is blocking in order to guarantee
atomicity

● Participants may be blocked for an indefinite period due to failures
● To break the blocking nature, prepared participants may make

autonomous decisions to commit or rollback
● Participant must durably record this decision in case it is eventually

contacted to complete the original transaction
● If the decision differs then the coordinator’s choice then a possibly

non-atomic outcome has happened: a heuristic outcome, with a
corresponding heuristic decision

● Heuristics cannot be resolved automatically

● But most TPMs will retain as much information as possible to aid
resolution

QCon London 2010 | Mark Little11

2PC: optimizations

● one phase commit
● no voting if transaction tree is single branch

One Phase Commit

• “read-only”
 resource doesn’t change any data
 can be ignored in second phase of commit

QCon London 2010 | Mark Little12

Consistency
• Transactions scope a set of operations
• Consistency can be violated within a transaction

- Allowing a debit for an empty account
- Debit without a credit during a Money Transfer
- Delete old file before creating new file in a copy

• transaction must be correct according to application rules
• Begin and commit are points of consistency

• Consistency preservation is a property of a transaction, not of the TP system
(unlike the A, I, and D of ACID)

State transformationsState transformations
new state under constructionnew state under construction

B
eg

in
B

eg
in

C
om

m
it

C
om

m
it

QCon London 2010 | Mark Little13

Isolation

● Transaction must operate as a black box to other
transactions

● Some caveats
● Multiple programs sharing data requires concurrency

control
● Locking (one at a time access)
● Versioning (each program has own copy)

● When using transactions
● programs can be executed concurrently
● BUT programs appear to execute serially

● Optimistic and pessimistic

QCon London 2010 | Mark Little14

Durability

● When a transaction commits, its results must survive
failures

● Must be durable recorded prior to commit
● System waits for disk ack before acking user

● If a transaction rolls back, changes must be undone
● Before images recorded
● Undo processing after failure

● Durability is probabilistic
● Durability can be implemented in a number of ways

QCon London 2010 | Mark Little15

Fault tolerance

● Why is it critical?
● Failures happen

● Insurance policy
● Transaction system uses log to drive outcomes

● Beware
● Some transaction services don’t log

● To be avoided for real applications
● Please don't encourage transaction usage without

logging!
● There are caveats ...

QCon London 2010 | Mark Little16

QCon London 2010 | Mark Little17

Anti-transaction sentiments
● “They add overhead for very little benefit.”

● “Failures don't happen that often.”
● “What's the worst that can happen?”

● They don't scale.
● “The are hard to use and understand.”
● “I don't need a database or XA.”
● “Transaction monitors are too expensive.”

● “As well as too bloated.”
● “I don't need atomicity.”

● “I need consensus but not the overhead of 2PC.”
● “I'm not interested in distributed transactions!”

QCon London 2010 | Mark Little18

“They add overhead for no benefit”
● Many customers regularly run with multiple one-phase

only participants in the same transaction
● And still get atomicity and recoverability
● Because failures are rare

● Lack of education on the problem
● Often surprised when risks are explained

● http://news.cnet.com/8301-30685_3-10370026-264.html
● But still want atomicity and recoverability with no impact on

performance
● Plus want to keep using same multiple one-phase

participants
● Try achieving consensus reliably without a multi-phase

protocol!
● Other protocols exist, e.g., gossip
● Rolling your own is harder than it sounds

QCon London 2010 | Mark Little19

Consider “distributed” consensus

Root coordinator

Resource

Subordinate
coordinator

QCon London 2010 | Mark Little20

Pseudo-transactions

● Let's pretend that resources are 2PC
● Let's make the application responsible for logging
● Let's make the application responsible for recording

undo work
● Let's make the application responsible for atomicity
● Let's make the application responsible for driving

recovery
● Let's hope that concurrent accesses don't occur
● Let's hope that cascading rollback doesn't occur
● Let's hope!

QCon London 2010 | Mark Little21

“Too expensive and bloated”

● OSS implementations have been improving
● Free is pretty cheap!

● OSS TPMs with support for recovery now exist
● JBossTS (ex HP-TS) now in OSS

● Limited footprint
● RMs support for 2PC

● MySQL
● Derby (aka CloudScape)
● Various JMS implementations

QCon London 2010 | Mark Little22

“I don't need atomicity”
● Forward compensation transactions may offer a

medium-term solution
● Do-undo

● The basis for all of the Web Services transactions
specifications and standards

● Extended transactions
● May provide a viable upgrade path for multiple

1PC participants too
● Not quite ACID, but better than manual/ad hoc

QCon London 2010 | Mark Little23

“I don't need a database or XA”
● Transactions don't require a database

● Databases are one of the reasons people equate 2PC
with all ACID semantics

● Transactions existed before XA
● Participants do not have to be XA-aware
● 2PC is independent of XA

● Durability could be through replication
● It's all probabilistic anyway
● File system is also sufficient

● Recoverable transactions

QCon London 2010 | Mark Little24

“They're hard to use and understand”

● They don't have to be intrusive
● Annotations based

● Most applications using transactions don't know they
are using transactions

● JEE, Web Services
● Software Transactional Memory
● Aspect Oriented Programming

QCon London 2010 | Mark Little25

When to use transactions

● When you need ACID semantics!
● Or ...

● When you have a need to guarantee consensus in the
presence of failures

● Consensus is not easy to achieve when failures happen
● Local or distributed cases

● When you need isolation and consistency across
failures

● Relaxing ACID semantics is possible with some TPMs
● Recoverable transactions may be sufficient

● Automatically promote when needed

QCon London 2010 | Mark Little26

When not to use transactions

● When all you want is consensus
● Without reliability
● Even with reliability, some transaction systems may be

overkill
● “Good enough” may be sufficient

● When you will only ever have a single resource
● Most modern databases come with them build in
● Though 1PC optimizations can make overhead

negligible
● When guarantees are too strong for your needs

QCon London 2010 | Mark Little27

When not to fudge the issue!

● If you want ACID semantics then use an
implementation that provides them all

● If you want to relax the semantics then use an
implementation that allows that to happen

● Don't use an “ACID” transaction system that doesn't
provide for ACID

● Stay away from pseudo-transactions!
● Don't expect ACID guarantees when your application

doesn't uphold its end of the contract
● Multiple 1PC resources are asking for trouble!

QCon London 2010 | Mark Little28

Transactions and multi-core

● Fault tolerance is important in local and distributed
systems

● Multi-core systems encourage concurrent applications
● Sharing data

● Cores may fail independently
● Cores may have on-chip persistence
● Similar problems to those which encouraged

distributed transactions

QCon London 2010 | Mark Little29

Nested transactions

● A transaction is nested
when it executes within
another transaction

● Nested transactions live in
a tree structure

● parents
● children

● Implement modularity and
containment

● Relax ACID

QCon London 2010 | Mark Little30

Relaxing isolation

• Internal isolation or resources should be a decision
for the service provider

• E.g., commit early and define compensation activities
• However, it does impact applications

Some users may want to know a priori what isolation policies
are used

•Undo can be whatever is required
• Before and after image
• Entirely new business processes

QCon London 2010 | Mark Little31

Relaxing atomicity

• Sometimes it may be desirable to cancel some work
without affecting the remainder
E.g., prefer to get airline seat now even without travel insurance

• Similar to nested transactions
Work performed within scope of a nested transaction is

provisional
Failure does not affect enclosing transaction

• However, nested transactions may be too restrictive
Relaxing isolation

QCon London 2010 | Mark Little32

Conclusions
● Imagine doing this ad hoc!
● Atomicity requires durability if failures are to be

survived
● Consensus requires a protocol that terminates

● Typically in finite time
● Failures require recovery

● Typically automatic
● Distributed nature complicates things
● Two-phase commit not just for distributed cases
● Many cases of 1 resource becoming 2 or more

● Transactions take care of that transition opaquely

	Slide 1
	Overview
	What is a transaction?
	ACID Properties
	Atomicity
	Two-phase commit
	Slide 7
	The “ins and outs” of Commit
	Consensus is not enough
	Heuristics
	2PC: optimizations
	Consistency
	Slide 13
	Slide 14
	Why do I care about recovery?
	Slide 16
	Slide 17
	OSS was immature, but now …
	Slide 19
	Slide 20
	OSS maturing
	Compensating transactions?
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Relaxing isolation
	Relaxing atomicity
	Slide 32

