o : BOSS. 4

o
@ @ by Red Hat

Transactions: Over used or
just misunderstood?

Mark Little

Overview

Transaction fundamentals
What is a transaction”?
ACID properties
Recovery (and why you should care!)

Why people turn away from transactions

Why you should not try to roll your own!

Pseudo transactions and their friends
Compensating transactions

When to use transactions and when not to use them

QCon London 2010 | Mark Little

What is a transaction?

“Transaction” is an overloaded term
Mechanistic aid to achieving correctness

Provides an “all-or-nothing” property to work that is
conducted within its scope

Even in the presence of failures

Ensures that shared resources are protected from
multiple users

Complexity is hidden by the transaction system

QCon London 2010 | Mark Little

ACID Properties

e Atomicity

e Consistency
e |[solation

e Durability

QCon London 2010 | Mark Little

Atomicity

- Within the scope of a transaction
— all changes occur together OR no changes occur

« Atomicity is the responsibility of the Transaction
Manager

» For example - a money transfer

— debit removes funds
— credit add funds
— no funds are lost!

5 QCon London 2010 | Mark Little

Two-phase commit

Required when there are more than one resource
managers (RM) in a transaction

Managed by the transaction manager (TM)

Uses a familiar, standard technique:
— marriage ceremony - Do you? | do. | now pronounce ..

Two - phase process
— voting phase - can you do it?
« Attempt to reach a common decision

— action phase - if all vote yes, then do it.
* Implement the decision

QCon London 2010 | Mark Little

2
E=
-l
R 4
—
(C
=
o
oy
(=]
N
c
o
T
c
o
-
c
O
S
c

The “ins and outs” of Commit

* Most descriptions of the two phase commit protocol focus on
the mechanism for achieving consensus

voting process managed by a transaction coordinator

first phase allows resource managers to checkpoint their work with
the intention to commit and report whether that checkpoint was
successful

the resource manager is in doubt or uncertain, a state that will be
maintained indefinitely until the coordinator communicates an
outcome

coordinator aggregates the responses of the resource managers and 1f
all resource managers have voted to commit, 1ssues a commit
command to each. Otherwise, it 1ssues the rollback command.

QCon London 2010 | Mark Little

Consensus is not enough

* Voting, by itself, 1s not sufficient to guarantee correctness in
the presence of failures
* Coordinator must

maintain a transaction log that may be used to reconstruct the state
prior to start of transaction

be able to to communicate the resolution strategy to each of the
participants
* At times coordinator may need to contact resource managers
directly

Some variations of protocol require resource managers to contact
coordinator

 Two-phase protocol alone does not provide ACID
guarantees!

QCon London 2010 | Mark Little

Heuristics

Two-phase commit protocol is blocking in order to guarantee
atomicity
Participants may be blocked for an indefinite period due to failures

To break the blocking nature, prepared participants may make
autonomous decisions to commit or rollback

Participant must durably record this decision in case it is eventually
contacted to complete the original transaction

If the decision differs then the coordinator’s choice then a possibly
non-atomic outcome has happened: a heuristic outcome, with a
corresponding heuristic decision

Heuristics cannot be resolved automatically

But most TPMs will retain as much information as possible to aid
resolution

10 QCon London 2010 | Mark Little

11

2PC: optimizations

one phase commit
no voting if transaction tree is single branch

—0—0 —0

subcoord subcoord

One Phase Commit

e “read-only”
v resource doesn’t change any data
v' can be ignored in second phase of commit

QCon London 2010 | Mark Little

12

Consistency

Transactions scope a set of operations
Consistency can be violated within a transaction

- Allowing a debit for an empty account

- Debit without a credit during a Money Transfer

- Delete old file before creating new file in a copy
transaction must be correct according to application rules
Begin and commit are points of consistency

Consistency preservation is a property of a transaction, not of the TP system

(unlike the A, |, and D of ACID)

QCon London 2010 | Mark Little

Isolation

13

Transaction must operate as a black box to other
transactions
Some caveats

Multiple programs sharing data requires concurrency
control

Locking (one at a time access)
Versioning (each program has own copy)

When using transactions
programs can be executed concurrently

BUT programs appear to execute serially
Optimistic and pessimistic

QCon London 2010 | Mark Little

Durability

When a transaction commits, its results must survive
failures

Must be durable recorded prior to commit
System waits for disk ack before acking user

If a transaction rolls back, changes must be undone

Before images recorded
Undo processing after failure

Durability is probabillistic

Durability can be implemented in a number of ways

14 QCon London 2010 | Mark Little

15

Fault tolerance

Why is it critical?
Failures happen
Insurance policy

Transaction system uses log to drive outcomes
Beware

Some transaction services don’t log

To be avoided for real applications
Please don't encourage transaction usage without

logging!
There are caveats ...

QCon London 2010 | Mark Little

16

SERGIO LEONE

UGLY
THE
GOOD

QCon London 2010 | Mark Little

AND THE

BAD

Anti-transaction sentiments

“They add overhead for very little benefit.”

“Failures don't happen that often.”
“What's the worst that can happen?”
They don't scale.

“The are hard to use and understand.”
“| don't need a database or XA.”

“Transaction monitors are too expensive.”
“As well as too bloated.”
“| don't need atomicity.”

“I need consensus but not the overhead of 2PC.”
“I'm not interested in distributed transactions!”

17 QCon London 2010 | Mark Little ‘

“They add overhead for no benefit”

18

Many customers regularly run with multiple one-phase
only participants in the same transaction

And still get atomicity and recoverability

Because failures are rare

Lack of education on the problem

Often surprised when risks are explained
http://news.cnet.com/8301-30685 3-10370026-264.html

But still want atomicity and recoverability with no impact on
performance
Plus want to keep using same multiple one-phase
participants

Try achieving consensus reliably without a multi-phase
protocol!

Other protocols exist, e.g., gossip
Rollina vour own is harder than it sounds

QCon London 2010 | Mark Little

Consider “distributed” consensus

Root coordinator

Resource

Subordinate
coordinator

19 QCon London 2010 | Mark Little

Pseudo-transactions

20

Let's pretend that resources are 2PC

Let's make the application responsible for logging

Let's make the application responsible for recording
undo work

Let's make the application responsible for atomicity

Let's make the application responsible for driving
recovery

_et's

_et's

_et's

nope that concurrent accesses don't occur

nope that cascading rollback doesn't occur

nope!

QCon London 2010 | Mark Little

21

“Too expensive and bloated”

OSS implementations have been improving
Free is pretty cheap!

OSS TPMs with support for recovery now exist

JBossTS (ex HP-TS) now in OSS
Limited footprint

RMs support for 2PC
MySQL
Derby (aka CloudScape)
Various JMS implementations

QCon London 2010 | Mark Little

22

“I don't need atomicity”

Forward compensation transactions may offer a
medium-term solution
Do-undo

The basis for all of the Web Services transactions
specifications and standards

Extended transactions

May provide a viable upgrade path for multiple
1PC participants too

Not quite ACID, but better than manual/ad hoc

QCon London 2010 | Mark Little

“l don't need a database or XA”

Transactions don't require a database

Databases are one of the reasons people equate 2PC
with all ACID semantics

Transactions existed before XA
Participants do not have to be XA-aware
2PC is independent of XA

Durability could be through replication

It's all probabilistic anyway
File system is also sufficient

Recoverable transactions

23 QCon London 2010 | Mark Little

“They're hard to use and understand”

They don't have to be intrusive
Annotations based

Most applications using transactions don't know they
are using transactions

JEE, Web Services
Software Transactional Memory

Aspect Oriented Programming

24 QCon London 2010 | Mark Little

When to use transactions

When you need ACID semantics!
Or ...

When you have a need to guarantee consensus in the
presence of failures

Consensus is not easy to achieve when failures happen
Local or distributed cases

When you need isolation and consistency across
failures

Relaxing ACID semantics is possible with some TPMs

Recoverable transactions may be sufficient

Automatically promote when needed

25 QCon London 2010 | Mark Little ‘

When not to use transactions

When all you want is consensus

Without reliability

Even with reliability, some transaction systems may be
overkill

“Good enough” may be sufficient
When you will only ever have a single resource
Most modern databases come with them build in

Though 1PC optimizations can make overhead
negligible

When guarantees are too strong for your needs

26 QCon London 2010 | Mark Little

When not to fudge the issue!

27

If you want ACID semantics then use an
Implementation that provides them all

If you want to relax the semantics then use an
Implementation that allows that to happen

Don't use an “ACID" transaction system that doesn't
provide for ACID

Stay away from pseudo-transactions!

Don't expect ACID guarantees when your application
doesn't uphold its end of the contract

Multiple 1PC resources are asking for trouble!

QCon London 2010 | Mark Little

Transactions and multi-core

Fault tolerance is important in local and distributed
systems

Multi-core systems encourage concurrent applications

Sharing data
Cores may fail independently

Cores may have on-chip persistence

Similar problems to those which encouraged
distributed transactions

28 QCon London 2010 | Mark Little

29

Nested transactions

A transaction is nested
when it executes within
another transaction

Nested transactions live in
a tree structure

parents

children

Implement modularity and
containment

Relax ACID

QCon London 2010 | Mark Little

30

Relaxing isolation

¢ Internal isolation or resources should be a decision
for the service provider
* E.g., commit early and define compensation activities

 However, it does impact applications

v"Some users may want to know a priori what isolation policies
are used

e Undo can be whatever is required
e Before and after image
e Entirely new business processes

QCon London 2010 | Mark Little

Relaxing atomicity

e Sometimes it may be desirable to cancel some work
without affecting the remainder

v'E.g., prefer to get airline seat now even without travel insurance

e Similar to nested transactions

v"Work performed within scope of a nested transaction is
provisional

v Failure does not affect enclosing transaction

e However, nested transactions may be too restrictive
v'Relaxing isolation

31 QCon London 2010 | Mark Little

Conclusions
Imagine doing this ad hoc!

Atomicity requires durability if failures are to be
survived

Consensus requires a protocol that terminates
Typically in finite time
Failures require recovery
Typically automatic
Distributed nature complicates things
Two-phase commit not just for distributed cases

Many cases of 1 resource becoming 2 or more

Transactions take care of that transition opaquely

32 QCon London 2010 | Mark Little

	Slide 1
	Overview
	What is a transaction?
	ACID Properties
	Atomicity
	Two-phase commit
	Slide 7
	The “ins and outs” of Commit
	Consensus is not enough
	Heuristics
	2PC: optimizations
	Consistency
	Slide 13
	Slide 14
	Why do I care about recovery?
	Slide 16
	Slide 17
	OSS was immature, but now …
	Slide 19
	Slide 20
	OSS maturing
	Compensating transactions?
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Relaxing isolation
	Relaxing atomicity
	Slide 32

