
Living and Working with Aging
Software

Ralph Johnson

University of Illinois at Urbana-Champaign
rjohnson@illinois.edu

Old software gets brittle
n Hard to change
n Hard to understand

Software should be soft

History of Word

 1983 - Word for DOS
 1985 - Word for Mac
 1989 - Word for Windows
 1991 - Word 2
 1993 - Word 6
 1995 – Word 95
 1997 – Word 97
 1998 – Word 98
 2000 – Word 2000
 2002 – Word XP
 2003 – Word 2003
 2007 – Word 2007

Increase of Maintenance

 Def: Maintenance is all work on software after
its first release
 Shrink-wrap
 Open source
 Incremental development

The Stigma of Maintenance

 Software Evolution

 Software Revolution?

Software Capital

 As an industry matures, it becomes more
capital intensive

 Is this true for software development?
 What is “capital” for software?

Software Capital

 Capital is software
 and knowing how it works.

If software is capital then …

 Expertise in the software is valuable
 Documentation is important
 Reverse-engineering is important

 Must maintain investment - keep it from
depreciating

“Legacy” software

 Unfortunately, often old software
 Has obsolete design
 Uses technology that nobody understands
 Uses technology that is not supported
 Has no experts - they are all gone
 Has no tests?

Managing 50 year old software

 Probably will last for a few more decades
 Worthwhile to invest in the future

 Documentation
 Automated tests
 Fix rare bugs

 Worthwhile to train developers
 Make changes slowly – mistakes are expensive
 Programming is program transformation

Discovery and invention

 Discovery – ability to understand current
system

 Invention – ability to create new system

 As system gets older, discovery becomes
more important

 Current design is more important than
requirements

Discovery and invention

 Discovery –
 Reverse engineering
 Documentation
 Training
 Hiring experts

Programming is program transformation

 Transform version N to version N+1
 By adding new modules
 By replacing modules
 By transforming modules

Refactoring

 Behavior-preserving program transformations
 Changes to the structure of a program, but

not its function
 Small, incremental design improvements
 Operations your editor should perform, but

can’t

Typical refactorings

 Change name of procedure / class / variable
 Move variable / procedure from one class /

module to another
 Change interface of procedure
 Extract / inline procedure

My history with refactoring

 1985-1989 – frameworks
 Reusable software requires iterative development

 Software is not reusable until it has been tested
 Test reusability by reusing it
 Fixing reusability errors requires interface changes

 Interface changes tend to fall into a few categories
 Bill Opdyke Ph.D. 1992

 Developed first catalog of refactorings
 Specified how they would work in C++

Smalltalk Refactoring Browser

 1993 – first refactoring tool
 1994 – start of Refactoring Browser by John

Brant
 1995 – first external users
 1997 – port to IBM VA for Smalltalk and Envy
 1998 – undo
 1999 – Don Roberts PhD
 2002 – part of Cincom’s VisualWorks 7.0

Related books

 eXtreme Programming eXplained by Kent
Beck, 2000.

 Refactoring: Improving the Design of Existing
Code by Martin Fowler, with Kent Beck, John
Brant, Don Roberts, and William Opdyke,
1999.

Refactoring is

 The process of changing a software system
in such a way that it does not alter the
external behavior of the code yet improves its
internal structure. It is a disciplined way to
clean up code that minimizes the chance of
introducing bugs. When you refactor, you are
improving the design of the code after you
have written it.

Refactoring without tools

 Start with an automated test suite
 Perform one refactoring at a time, and test

after each refactoring.
 Find mistakes quickly
 Mistakes are easy to fix

 Be prepared to start over and redo
refactoring

Lessons

 Refactoring is easier when you know how to
do it
 Tests
 Small steps
 Library of refactorings

 Tools can help

Flossing vs. root canal

Flossing

 Refactoring is 10% of your programming time
Clean up your code after you make a change

 If a change is too hard, imagine what could
have made it easier, and refactor to it

 Keep a set of goals in mind, and every time
you change a file, see how you can make it
better fit your goals

Root canal

 Refactoring is a project
 Make a plan, with many small steps
 Perform steps one at a time
 Keep the system running at all times
 “No battle plan survives contact with the

enemy” Helmuth von Moltke
 “Plans are nothing. Planning is everything.”

Dwight D. Eisenhower

My recent refactoring research

 C preprocessor - Alejandra Garrido
 Library evolution - Danny Dig
 Fortran - Photran project - Jeff Overbey
 Refactoring to fix security bugs - Munawar

Hafiz
 Refactoring to introduce parallelism - Stas

Negara / Danny Dig

Library evolution

 Problem: libraries change with time. New
version is not always compatible with old.
Especially a problem with OO libraries, which
are new and have complex interfaces.

 Solution:
 Change your library by refactoring.
 Give refactorings to users.
 Users run the refactorings and update their

applications.

Problems

 Must be able to distribute refactorings
 Refactorings might break user code

 Need to change user code and proceed
 Framework change might not be a refactoring

 How often?
 Can these be carried out by hand?

 Four Java libraries
 Eclipse 3.0
 Struts 1.2.4
 Log4j 1.3
 A proprietary mortgage system

 Mature - in use more than three years
 Major releases
 Change log explaining the changes from

previous version

-41624Change
log

113813651Breaking
changes

1743494352,579API
classes

5262971,923size in
KLOC

Mortgagelog4j
1.3

Struts
1.2.4

Eclipse
3.0

81979184% refactorings

113813651Breaking
changes

Mortgagelog4j
1.3

Struts
1.2.4

Eclipse
3.0

Danny Dig and Ralph Johnson: How do APIs evolve? A story of
refactoring,

Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien Nguyen:
Effective Software Merging in the Presence of Object-
Oriented Refactorings,

Danny Dig, Stas Negara, Vibhu Mohindra, Ralph Johnson:
ReBA: Refactoring-aware Binary Adaptation of Evolving
Libraries,

https://netfiles.uiuc.edu/dig/www/research.html

Changing programming language

 Convert million lines of Delphi to C#
 Never stop adding features

 18 months by John Brant, Don Roberts, a
couple of local programmers and the local
QA team

Changing architecture

 Highly integrated => highly modular
 Modular => service oriented

Software Development is Program
Transformation

 Anything can be added later
 Modularity
 Security
 Documentation

 Tools make transformation easer, but more
important than tools are:
 Design expertise - being able to tell good design

from bad
 Taking small steps - keep your system running
 Have a plan

 Flossing - direction system is evolving
 Root canal - small steps to achieve big aim

 Automated tests

 If software is going to last, we have to take
care of it.

 Requires architectural oversight
 Make sure future change is possible
 Keep design debt small
 Refactoring is key for managing evolution
 Program transformation tools are valuable

