
Functional Languages 101

What’s All the Fuss About?

Rebecca Parsons

ThoughtWorks

Agenda

• What makes a language functional?

• An larger example

• The case for renewed interest in functional

languageslanguages

• Other neat and nifty things to do with

functional languages

• Resources for further study

Some Example Languages

• Scheme, Lisp (and of course Lambda Calculus)

– the originals

• ML, Ocaml, etc - here comes typing!

• Haskell – a lazy language not for the lazy• Haskell – a lazy language not for the lazy

• Erlang – message passing

• Scala, Clojure, F# - the new(er) kids on the

block

Essentials of Scheme

• (define name expr)

• (func arg…) | ident | symbol | (lambda (x) e)

• +/-/*, cond, eq? #t

• Lists, car/cdr/cons, null?

Two Examples

(define length

(lambda (ll)

(cond

((null? ll) 0)

(define squares

(lambda (li)

(cond

((null? li) ()) ((null? ll) 0)

(#t (add1

(length (cdr ll)))))))

((null? li) ())

(#t (cons

(* (car li) (car li))

(squares (cdr

li)))))))

Characteristics

• No side effects (for some definition of No)

– Values looked up in an environment

• Functions as first class citizens

• Composition of functions, not statements• Composition of functions, not statements

• Type inference

A function accepts some number of arguments,

each of an appropriate type, and returns a

result of the appropriate type

A computation is referentially transparent if

invoking it on the same input values always

returns the same result

Observation

Computation involving mutable state can not be

referentially transparent

int state = 10;

int foo (int bar) {

state = state + bar;

return (state);
}

foo (10) => 20
foo (10) => 30

we can’t reason about the value of foo(10)

anymore. And oh yeah, btw, my call to foo can

mess up your call if we share state.

Side Effects and Mutable State

• Both complicate reasoning about program

behavior.

• However, that doesn’t mean we can do

without side effectswithout side effects

– Persistence

– Dispensing cash

– Requesting input

– Displaying a page

Functions Can Be…

• Passed as arguments

• Created at run time and then used

• Returned as values

• Assigned to variables• Assigned to variables

• Yup – they’re just like any other data type!

In fact, in pure Lambda Calculus, integers are

functions too, but I digress

Even constructs like if can be a function too,

taking three arguments – conditional

expression, true expression and false

expression, with suitable thunking or laziness. expression, with suitable thunking or laziness.

Functions in the Functional World

• Higher order functions

• Currying

• Closures

• Iteration, recursion and tail recursion• Iteration, recursion and tail recursion

• Function maker

A more complicated example

(define map (lambda (func lst)

(cond ((null? lst) ())

(#t (cons (func (car lst))

(map func (cdr lst)))))))(map func (cdr lst)))))))

(map add1 ‘(0 1 2 3))

(1 2 3 4)

(map length ‘((1 2 3) (a b) (ola amanda john

aino)))

(3 2 4)

Curried Functions

• No, not Indian cuisine

• Partial application of a function

– Let’s think in types for a moment.

• Func-a: (AxB) -> C• Func-a: (AxB) -> C

• Func-b: A -> (B -> C)

– Such that (Func-a x y) = ((func-b x) y)

• Let’s look at map a bit differently

Map again

(define map (lambda (func lst)

(cond ((null? lst) ())(cond ((null? lst) ())

(#t (cons (func (car lst))

(map func (cdr lst)))))))

A Curried Version

(define map2

(lambda (func)

(lambda (lst)

(cond ((null? lst) ())(cond ((null? lst) ())

(#t (cons (func (car lst))

((map2 func) (cdr lst)))))))

(define list-count (map2 length)

(list-count ‘((1 2 3) (a b) (amanda john ola

aino)))

(3 2 4)

Guess what? I just made a closure!

See how easy that was.

So what is a closure?

• A functional data object (which I can pass

around) …

• … with a local environment that comes from

its lexical scope (in Sheme)its lexical scope (in Sheme)

• The result of (map2 length) is a closure …

• … func is bound in that closure to length

• A closure is a function with a local

environment (mapping identifiers to values)

And I care why?

• Closures allow the easy creation of functions

during run-time

• Closures, and more generally higher order

functions, is an important part of the functions, is an important part of the

expressiveness of functional languages

Writing a functional program

• Basic unit of design is a function

• Recursion is fundamental (base case(s) and
recursive step(s))

• Rely on compiler to transform and optimize • Rely on compiler to transform and optimize
tail recursion

• Think of the problem as successive
transformations of data items by functions

• Easiest to think in terms of recursive and
compound data structures

Function Maker

• This style of programming results in recurring

patterns in code

• Remember squares and length?

Two Examples (repeated)

(define length

(lambda (ll)

(cond

((null? ll) 0)

(define squares

(lambda (li)

(cond

((null? li) ()) ((null? ll) 0)

(#t (add1

(length (cdr ll)))))))

((null? li) ())

(#t (cons

(* (car li) (car li))

(squares (cdr

li)))))))

Squares and Length

• Base case of the recursive call is null?

• Recursion step based on some function of the

car of the list and recursion on the cdr.car of the list and recursion on the cdr.

– I did cheat a bit here.

• Can we generalize?

(define list-function-mker

(lambda (base rec-op)

(lambda (ll)

(cond

((null? ll) base)

(#t (rec-op (car ll) ((list-function-mker base rec-op) (cdr ll))))))))

(define sq2 (list-function-mker ()(define sq2 (list-function-mker ()

(lambda (num results)

(cons (* num num) results))))

(define len2 (list-function-mker 0

(lambda (head result)

(add1 result))))

• Patterns are expressible in such function-

makers

• They can be instantiated with functions in the

various slotsvarious slots

• Significantly reduces code duplication

• Still very easy to unit test

• Somewhat more difficult to read, until you get

used to it

A Bigger Example

• Parser combinators

– Pairing of recognizer and semantic model
construction on recognition

• Use matchers for terminal symbols• Use matchers for terminal symbols

• Combine these using combinators for the
grammar operations

– | is alternative

– Sequence

– Various closures (*, +, n)

How to Construct Sequences

• The sequence combinator

– .. accepts a list of combinators and a model
function

– .. returns a closure binding that combinator list
and accepting a token bufferand accepting a token buffer

– If all combinators match as the tokens are
consumed, then the model function is applied to
the list of models from the combinators.

– The final token buffer is returned, with all the
matched tokens consumed.

So, why now?

• Increasing need for concurrent programming
(multi-core)

– To get speed increases, need to exploit cores

– But parallel programming in imperative languages is
hard (deadlocks, race conditions, etc)hard (deadlocks, race conditions, etc)

– Functional programs don’t share state so they can’t
trample on anyone else’s state

• Please remember though, you still have to design
the program to run concurrently

– It doesn’t come for free

Other things to explore

• Continuations:

– A continuation is a function that represents the
rest of the computation

– (* (+ 1 2) 3) can be thought of as a redux (+ 1 2)
and the continuation (* [] 3)and the continuation (* [] 3)

• And what are they good for?

– Can be used for exception management

– Can be used for workflow processing

– Optimization (0 in list multiplication)

Lazy Languages

• Strict computation proceeds by evaluating all
arguments to a function and then invoking the
function on the resulting values

• Lazy computation proceeds by not evaluating
argument values unless and until they are argument values unless and until they are
actually needed (occur in a strict position

• Examples of strict positions: first position of
function application, conditional expression in a
control structure, anything going external like a
print statement

Type Systems

• Static versus dynamic typing

– Yes, the war is still raging

• The joys of type inference

– Why should you have to specify the type of – Why should you have to specify the type of

everything?

– Type systems can be helpful (I guess)

Resources

• Dr. Scheme and the PLT web site
www.pltscheme.org

• Structure and Interpretation of Computer
Programs www.mitpress.mit.edu/sicp

Haskell www.haskell.org and Programming • Haskell www.haskell.org and Programming
Haskell

• Caml and Ocaml http://caml.inria.fr/

• Erlang www.erlang.org

• F# (Microsoft, F# in Action)

QUESTIONS???

