Functional Languages 101

What’s All the Fuss About?
Rebecca Parsons
ThoughtWorks

Agenda

What makes a language functional?
An larger example

The case for renewed interest in functional
languages

Other neat and nifty things to do with
functional languages

Resources for further study

Some Example Languages

Scheme, Lisp (and of course Lambda Calculus)
—the originals

ML, Ocaml, etc - here comes typing!
Haskell — a lazy language not for the lazy
Erlang — message passing

Scala, Clojure, F# - the new(er) kids on the
block

Essentials of Scheme

e (define name expr)
e (funcarg...) | ident | symbol | (lambda (x) e)
e +/-/*, cond, eq? #t

e Lists, car/cdr/cons, null?

Two Examples

(define length (define squares
(lambda (Il) (lambda (li)
(cond (cond
((null? Il) O) ((null? 1i) ()
(#t (add1 (#t (cons
(length (cdr 1))))))) (* (car li) (car li))

(squares (cdr

li)))))))

Characteristics

No side effects (for some definition of No)

— Values looked up in an environment
Functions as first class citizens
Composition of functions, not statements

Type inference

A function accepts some number of arguments,
each of an appropriate type, and returns a
result of the appropriate type

A computation is referentially transparent if
invoking it on the same input values always
returns the same result

Observation

Computation involving mutable state can not be
referentially transparent

Int state = 10;
Int foo (int bar) {
state = state + bar:

return (state);
}

foo (10) => 20
foo (10) => 30

we can’t reason about the value of foo(10)
anymore. And oh yeah, btw, my call to foo can
mess up your call if we share state.

Side Effects and Mutable State

e Both complicate reasoning about program
behavior.

e However, that doesn’t mean we can do
without side effects
— Persistence
— Dispensing cash
— Requesting input
— Displaying a page

Functions Can Be...

Passed as arguments

Created at run time and then used
Returned as values

Assigned to variables

Yup — they’re just like any other data type!

In fact, in pure Lambda Calculus, integers are
functions too, but | digress

Even constructs like if can be a function too,
taking three arguments — conditional
expression, true expression and false
expression, with suitable thunking or laziness.

Functions in the Functional World

Higher order functions

Currying

Closures

lteration, recursion and tail recursion
Function maker

A more complicated example

(define map (lambda (func Ist)
(cond ((null? Ist) ())
(#t (cons (func (car Ist))
(map func (cdr Ist)))))))

(map addl (012 3))
(12 34)
(map length ‘((1 2 3) (a b) (ola amanda john

aino)))
(32 4)

Curried Functions

No, not Indian cuisine

Partial application of a function
— Let’s think in types for a moment.

Func-a: (AxB) -> C
Func-b: A -> (B -> C)
— Such that (Func-a x y) = ((func-b x) y)

Let’s look at map a bit differently

Map again

(define map (lambda (func Ist)
(cond ((null? Ist) ())
(#t (cons (func (car Ist))
(map func (cdr Ist)))))))

A Curried Version

(define map2
(lambda (func)
(lambda (Ist)
(cond ((null? Ist) ())
(#t (cons (func (car Ist))
((map2 func) (cdr Ist)))))))

(define list-count (map2 length)
(list-count ‘((1 2 3) (a b) (amanda john ola
aino)))

(32 4)

Guess what? | just made a closure!

See how easy that was.

So what is a closure?

A functional data object (which | can pass
around) ...

... with a local environment that comes from
its lexical scope (in Sheme)

The result of (map2 length) is a closure ...
... func is bound in that closure to length

A closure is a function with a local
environment (mapping identifiers to values)

And | care why?

* Closures allow the easy creation of functions
during run-time

e Closures, and more generally higher order
functions, is an important part of the
expressiveness of functional languages

Writing a functional program

Basic unit of design is a function

Recursion is fundamental (base case(s) and
recursive step(s))

Rely on compiler to transform and optimize
tail recursion

Think of the problem as successive
transformations of data items by functions

Easiest to think in terms of recursive and
compound data structures

Function Maker

e This style of programming results in recurring
patterns in code

e Remember squares and length?

Two Examples (repeated)

(define length (define squares
(lambda (Il) (lambda (li)
(cond (cond
((null? Il) O) ((null? 1i) ()
(#t (add1 (#t (cons
(length (cdr 1))))))) (* (car li) (car li))

(squares (cdr

li)))))))

Squares and Length

e Base case of the recursive call is null?

e Recursion step based on some function of the
car of the list and recursion on the cdr.

— | did cheat a bit here.

e Can we generalize?

(define list-function-mker
(lambda (base rec-op)
(lambda (ll)
(cond

((null? 1) base)
(#t (rec-op (car Il) ((list-function-mker base rec-op) (cdr 11))))))))

(define sq2 (list-function-mker ()
(lambda (num results)
(cons (* num num) results))))

(define len2 (list-function-mker 0
(lambda (head result)
(add1 result))))

Patterns are expressible in such function-
makers

They can be instantiated with functions in the
various slots

Significantly reduces code duplication
Still very easy to unit test

Somewhat more difficult to read, until you get
used to it

A Bigger Example

e Parser combinators

— Pairing of recognizer and semantic model
construction on recognition

 Use matchers for terminal symbols

e Combine these using combinators for the
grammar operations
— | is alternative

— Sequence
— Various closures (*, +, n)

How to Construct Sequences

e The sequence combinator

— .. accepts a list of combinators and a model
function

— .. returns a closure binding that combinator list
and accepting a token buffer

— If all combinators match as the tokens are
consumed, then the model function is applied to
the list of models from the combinators.

— The final token buffer is returned, with all the
matched tokens consumed.

So, why now?

e |ncreasing need for concurrent programming
(multi-core)
— To get speed increases, need to exploit cores

— But parallel programming in imperative languages is
hard (deadlocks, race conditions, etc)

— Functional programs don’t share state so they can’t
trample on anyone else’s state

 Please remember though, you still have to design
the program to run concurrently

— It doesn’t come for free

Other things to explore

e Continuations:

— A continuation is a function that represents the
rest of the computation

—(* (+ 1 2) 3) can be thought of as a redux (+ 1 2)
and the continuation (* [] 3)

 And what are they good for?
— Can be used for exception management
— Can be used for workflow processing
— Optimization (0 in list multiplication)

Lazy Languages

e Strict computation proceeds by evaluating all
arguments to a function and then invoking the
function on the resulting values

* Lazy computation proceeds by not evaluating
argument values unless and until they are
actually needed (occur in a strict position

e Examples of strict positions: first position of
function application, conditional expression in a
control structure, anything going external like a
print statement

Type Systems

e Static versus dynamic typing
— Yes, the war is still raging

 The joys of type inference

— Why should you have to specify the type of
everything?

— Type systems can be helpful (I guess)

Resources

Dr. Scheme and the PLT web site
www.pltscheme.org

Structure and Interpretation of Computer
Programs www.mitpress.mit.edu/sicp

Haskell www.haskell.org and Programming
Haskell

Caml and Ocaml http://caml.inria.fr/

Erlang www.erlang.org
F# (Microsoft, F# in Action)

QUESTIONS???

0% NOT
NE KNOWS WHET “Eﬁow.
No- Haa HAS, ARY FA

7

QE
, WT THE ,
| Works’ e) EE A ATT TOR. THAT
ThoughtWo SWOULD

TischITP

Count MBI

ong,
loct ang

be munitag
g

ial |

W vy B holing "€t Jam ovening ;,, the Coming ey We noag
¥our help With Rapiggy I8 0 1 iy 1o help savy ha worty

Sign up, onate sop,, tme apg Make 4 difforonc,, / FREEPDST THDUGH"WORKS
We'l] g In touen, with dateg Soon, [Sth Flggy Berkshjpg Hous

168173 High Holbom
Nz London

AC1V 744
Youe. KoL o

o —— | n
Thought\\i.. Tisch Irp C ’?

bl L om

