
To ESB or not to ESB

Ross Mason

MuleSoft



About Me



Agenda

When to When to When not When not Some Some When to 
ESB

When to 
ESB

When not 
to ESB

When not 
to ESB

Some 
options
Some 

options





“Vendor” ESB



Reality Check



Know your Architecture



Architecture Checklist

� Identify systems and processes

�Create an integration profile

�Map data flows

�Set performance requirements

�Define security requirements

� Identify redundancy requirements

�Quantify QoS requirements



Bling, innit



To ESB

�Numerous integration points

�Need to grow the architecture

�More that one protocol

�Mediation requirements

� Scalability, Management, Monitoring, 

Transformation and Security requirements

� Strategic Projects



Not to ESB

“We need access to a message queue”



Not to ESB: RDD



Not to ESB: YAGNI



I’ll buy your 

software

cha-ching

Not to ESB: GOLF



What are the options?



Web Services
• Pros:

– Language, platform, and transport agnostic

– Mediation support

– Built-in error handling (faults)

– Extensibility– Extensibility

• Cons:

– heavy-weight 

– verbose

– Hard to develop, requires tools

– Sprawling WS-* standards



REST

• Pros:

– Language and platform agnostic

– Small learning curve, less reliance on tools

– Concise & Clean

• Cons:• Cons:

– Assumes a point-to-point communication

– Lack of standards support for security, policy, reliable 

messaging, etc.

– Tied to the HTTP transport model



• Pros

– Quick solution

– Tailored to the specific problem

• Cons

Custom code

– Need to maintain more code

– Difficult to change over time

– Need to build security, management, reliability

– Slow to add new capabilities

– No core business activity

18



Integration Scenarios



Simple Integration

Frontend

(web app)

Backend Service

REST / Web Services



Partner Data integration

Partner

B2B Services

Partner

Web Services



Public API

Services

Public API

Web Client Web Client

REST



Mixed Integration

Frontend

(web app)

Backend Service

ESB

Backend ApplicationBackend Application

REST JMS FTP



ESB Integration

Inventory 

Fulfillment 

Inventory 

Bidding Order Service

Supplier 1 Supplier 2 Supplier 3

order from

Supplier 3

request bids

ESB

Fulfillment 

Service

Bidding

Service

Order Service

Inventory 

Service
Inventory

Purchasingcreate supply bid bid selected place order

out of stock

request items



iBeans

easy service integrations



Foundation

• Abstraction for the complexity of SOA

• Open source framework

• Lineage, pedigree of Mule ESB

• 15+ iBeans ready for production

• “Micro-light ESB”



Communication

• Reusable Java modules

• Bean interface to networked services

– Not just SOAP, REST

• Communications channels

– Ajax from JavaScript

– RPC

– Java



Use cases

• Situations where an ESB is too heavy

• Social media app integrations

• Easy cross-webapp reuse

• Point-to-point integration

• Seamless migration path to Mule ESB



GPS Walker

demo



http://10.0.17.238:8080/gpswalk

er/cursor.htmler/cursor.html



Overview



The pieces

Runtime Container: Tomcat, Tcat, (Mule)

iBeans Runtime

Channels: HTTP, SMTP, IMAP, 

REST, JDBC, JMS, XMPP, FTP

Transform and BindingsScheduler

Formats: JSON, RSS, ATOM, 

XML, SOAP

Application Annotations

Transform and BindingsScheduler

Web apps

appswebyourconsole

iBean  Objects



Summary

• Technology selection must be driven by 

architecture

• ESBs are good for integrations with multiple 

participantsparticipants

• REST/WS are better suited to other integration 

problems

• iBeans offers a point-to-point to ESB migration 

path 



Questions?



• Embedding Mule in a web application not 

usually a good idea

ESB / Integration platform

Web App Web App Web App

Consumes services from


