
<Insert Picture Here>

TopLink Grid: Scaling JPA Applications with

Coherence

Shaun Smith, Principal Product Manager

Oracle Server Technologies, TopLink

Copyright © 2010 Oracle

@

JAXB: Java Architecture for XML Binding
SDO: Service Data Objects

Java Persistence: The Problem Space

CUST

ID NAME C_RATING

Relational

Customer

id: int

name: String

creditRating: int

Java

<customer id=“…”>

<name>…</name>

…

</contact-info>

</customer>

XML

JPA: Java Persistence API

JPA

JAXB/SDO

EclipseLink Project

• Provides JPA, JAXB, SDO, DBWS, and EIS

persistence services

• Open source Eclipse project

• Project Lead by Oracle

• Founded by Oracle with the contribution of full

TopLink source code and tests

• Based upon product with 12+ years of commercial

usage

EclipseLink JPA

• JPA 1.0 compliant with advanced persistence

• JPA 2.0 Reference Implementation (JSR 317)

• Supports Java EE, Java SE, Web, Spring, and OSGi

• Supports all leading RDMS with platform specific

features

• Best JPA for the Oracle Database—supporting advanced

features

• Extensible and pluggable

• Key infrastructure:

• Caching, Locking, Query Framework, Mapping, …

• … plus many valuable advanced features

Oracle TopLink 11gR1

• Oracle’s Enterprise Java Persistence Framework

• Includes open source EclipseLink with Commercial Support

• Certified on WebLogic and redistributed by Oracle as part of

TopLink product

• TopLink Grid: JPA integration with Coherence

• Included in WebLogic Server

• Tooling Support in JDeveloper and Eclipse

Example JPA Client Code

…

Mechanics of a JPA Application

Read
Entities

Step 1

Application Logic

JPA

Create/
Modify
Entities

Step 2

Application Logic

JPA JPA

Insert/
Update
Entities

Step 3

Application Logic

JPA

JPA with Cache

TX Commit

Application Logic

TX n

Application Logic

TX n+1

Read
Entities

Cache hits
avoid object
build cost

Scaling Java Persistence

A
p

p
li
c

a
ti

o
n

A
p

p
li
c

a
ti

o
n

A
p

p
li
c

a
ti

o
n

A
p

p
li
c

a
ti

o
n

A
p

p
li

c
a

ti
o

n

JPA
A

p
p

li
c

a
ti

o
n

A
p

p
li
c

a
ti

o
n

A
p

p
li
c

a
ti

o
n

A
p

p
li

c
a

ti
o

n

A
p

p
li
c

a
ti

o
n

JPA

A
p

p
li
c

a
ti

o
n

A
p

p
li
c

a
ti

o
n

A
p

p
li
c

a
ti

o
n

A
p

p
li
c

a
ti

o
n

A
p

p
li
c

a
ti

o
n

JPA. . .

EclipseLink in a Cluster

Application Logic

EntityManager

EntityManagerFactory

Shared

Cache

TX Cache

Application Logic

EntityManager

EntityManagerFactory

Shared

Cache

TX Cache

Need to keep

Shared Caches

Coherent

Traditional Approaches to Scaling JPA

• Prior to TopLink Grid, there were two strategies for
scaling EclipseLink JPA applications into a cluster:
• Disable Shared Cache

• Cache Coordination—communicate changes via messaging

Strategy 1: Disable Shared Cache

EntityManagerFactory EntityManagerFactory

Application Logic

EntityManager

TX Cache

Application Logic

EntityManager

TX Cache

Disable Shared Cache

• Ensures all nodes have coherent view of data.

• Database is always right

• Each transaction queries all required data from database and

constructs Entities

• No inter-node messaging

• Memory footprint of application increases as each

transaction has a copy of each required Entity

• Every transaction pays object construction cost for

queried Entities.

• Database becomes bottleneck

Strategy 2: Cache Coordination

Application Logic

EntityManager

EntityManagerFactory

Shared

Cache

TX Cache

Application Logic

EntityManager

EntityManagerFactory

Shared

Cache

TX Cache

Cache

Coordination

Cache Coordination

• Ensures all nodes have coherent view of data.

• Database is always right

• Fresh Entities retrieved from shared cache

• Stale Entities refreshed from database on access

• Creation and/or modification of Entity results in message to all

other nodes

• Cost of coordinating 1 concurrent update per node is O(n2) as all

nodes must be informed—cost of communication and processing

may eventually exceed value of caching

• Shared cache size limited by heap of each node

Introducing TopLink Grid

• TopLink Grid allows Java developers to transparently
leverage the power of the Coherence data grid

• TopLink Grid combines:
• the simplicity of application development using the Java

standard Java Persistence API (JPA) with

• the scalability and distributed processing power of Oracle’s
Coherence Data Grid.

• Supports 'JPA on the Grid' Architecture
• EclipseLink JPA applications using Coherence as a shared

(L2) cache replacement along with configuration for more
advanced usage

TopLink Grid with Coherence Cache

Application Logic

EntityManager

EntityManagerFactory

TX Cache

Application Logic

EntityManager

EntityManagerFactory

TX Cache

Coherence

Oracle Coherence Data Grid
Distributed in Memory Data Management

• Provides a reliable data

tier with a single,

consistent view of data

• Enables dynamic data
capacity including fault
tolerance and load
balancing

• Ensures that data
capacity scales with
processing capacity

MainframesDatabases Web Services

Enterprise

Applications

Real Time

Clients

Web

Services

Oracle Coherence

Data Grid

Data Services

JPAJPA

Coherence

JPA with Coherence

TX Commit

Application Logic

Cluster Node 1

Application Logic

Cluster Node N

Read
Entities

. . .

TopLink Grid—Configurations

• Grid Cache—Coherence as Shared (L2) Cache
• Configurable per Entity type

• Entities read by one grid member are put into Coherence and
are immediately available across the entire grid

• Grid Read
• All supported read queries executed in the Coherence data

grid

• All writes performed directly on the database by TopLink
(synchronously) and Coherence updated

• Grid Entity
• All supported read queries and all writes are executed in the

Coherence data grid

JPA Application

Grid Cache ('Cache Aside')

• Reading:

• Primary Key queries check

Coherence first.

• If found in Coherence, Entity is

returned.

• If not found the database is

queried.

• Entities queried from database

are put() into Coherence and

returned to the application.

• Writing:

• All inserts, updates, and deletes

are directed to the database

• On successful commit,

Coherence is updated

Insert/
Update/
Delete

Query

PK
Query

Grid Cache—Leveraging Cache

• Cache is used when processing database results

• EclipseLink extracts primary keys from results and

checks cache to avoid object construction.

• Even if a SQL query is executed, an object cache can

still improve application throughput by eliminating

object construction costs for cached Entities

Grid Entity—Reading

• Primary key queries result in
get() on Coherence

• JPQL queries, e.g.,
Select e from Employee E

are translated to Filters and
executed in Coherence

• The database is not queried
by EclipseLink.

JPA Application

Query

PK
Query

CacheLoaders may be
configured to query
database with PK query
on cache miss

Limitations in TopLink 11gR1

• TopLink Grid 11gR1 Supports single Entity queries

with constraints on attributes, e.g.:
select e from Employee e where e.name = 'Joe'

• Complex queries must be executed on database:

• Multi-Entity queries or queries that traverse relationships

('joins'), e.g.:
select e from Employee e

where e.address.city = 'Bonn'

• Projection (Report) queries, e.g.:
select e.name, e.city from Employee e

Grid Entity—Writing

• Applications commit JPA

transactions with new,

deleted, or modified Entities

• EclipseLink put()s all new

and updated Entities into

Coherence and remove()s

deleted Entities.

JPA Application

Put/
Remove

Insert/
Update/
Delete

CacheStores may be
configured to write cache
changes to the database
using TopLink Grid

Grid Read

• All writes performed directly
on database.

• Primary key queries result in
get() on Coherence

• JPQL queries, e.g.,
Select e from Employee E

are translated to Filters and
executed in Coherence

• The database is not queried
by EclipseLink.

• CacheLoaders should be
configured to query database
with PK query on cache miss

JPA Application

Query

PK
Query

Insert/
Update/
Delete

Grid Enabling JPA Entities

• A single annotation is added to an Entity to enable
Coherence usage, e.g.,

@Entity

@Customizer(CoherenceReadCustomizer.class)

public class Employee implements Serializable {

…
}

• Standard Coherence cache configuration applies

• POF, ExternalizableLite, and Serializable Entities supported

• Coherence does not provide support for the
serialization of complex graphs across caches.
• Coherence serializes objects/object graphs and places the

results in to a single cache under a key.

• Can't query or lazy load individual objects from the graph—all
or nothing

TopLink Grid Relationship Support

a: [010111010]

Single Binary Object

JPA Application

Multiple Object
Graph

A

B C

• TopLink Grid 11gR1 does support storage of complex
graphs of Entities with each Entity type stored in a
corresponding Coherence cache.
• Relationship information is stored into Coherence and

reconstituted upon retrieval

• Can query for objects of class A, B, or C

• Lazy and eager relationships are supported—even to db data!

TopLink Grid Relationship Support

a: [010111010]

b: [110011010]

c: [101011010]

JPA Application

Multiple Object
Graph

A

B C

TopLink and Coherence:

Objects, not Data

• TopLink's shared cache is an object cache

• Cache hits do not incur object construction costs—typically an

expensive part of object/relational mapping

• Coherence caches serialized objects

• Using Coherence as TopLink's shared object cache

• Only incurs serialization cost, not object construction

• Can leverage POF serialization for maximum performance

• TopLink Grid pays the object construction cost only

once and eliminates it for each cluster member

How is TopLink Grid different from

Hibernate with Coherence?

• Hibernate does not cache objects, it caches data rows

in Coherence

• Using Coherence as a cache for Hibernate

• Every cache hit incurs both object construction and

serialization costs

• Worse, object construction cost is paid by every cluster

member for every cache hit

• Hibernate only uses Coherence as a cache—TopLink

Grid is unique in supporting execution of queries

against Coherence which can significantly offload the

database and increase throughput

Summary

• TopLink supports a unique range of strategies for

scaling JPA applications

• TopLink Grid provides:

• An easy way for JPA developers to scale out their Java

EE applications

• 'JPA on the Grid' functionality to support scaling JPA

applications with Coherence

• Support for caching Entities with relationships in Coherence

