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JAXB: Java Architecture for XML Binding
SDO: Service Data Objects

Java Persistence: The Problem Space

CUST

ID NAME C_RATING

Relational

Customer

id: int

name: String

creditRating: int

Java

<customer id=“…”>

<name>…</name>

…

</contact-info>

</customer>

XML

JPA: Java Persistence API

JPA

JAXB/SDO



EclipseLink Project

• Provides JPA, JAXB, SDO, DBWS, and EIS 

persistence services

• Open source Eclipse project

• Project Lead by Oracle

• Founded by Oracle with the contribution of full 

TopLink source code and tests

• Based upon product with 12+ years of commercial 

usage



EclipseLink JPA

• JPA 1.0 compliant with advanced persistence

• JPA 2.0 Reference Implementation (JSR 317)

• Supports Java EE, Java SE, Web, Spring, and OSGi

• Supports all leading RDMS with platform specific 

features

• Best JPA for the Oracle Database—supporting advanced 

features

• Extensible and pluggable

• Key infrastructure: 

• Caching, Locking, Query Framework, Mapping, …

• … plus many valuable advanced features



Oracle TopLink 11gR1

• Oracle’s Enterprise Java Persistence Framework

• Includes open source EclipseLink with Commercial Support

• Certified on WebLogic and redistributed by Oracle as part of 

TopLink product

• TopLink Grid: JPA integration with Coherence

• Included in WebLogic Server

• Tooling Support in JDeveloper and Eclipse



Example JPA Client Code

…



Mechanics of a JPA Application
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JPA

JPA with Cache
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Scaling Java Persistence
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EclipseLink in a Cluster
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Traditional Approaches to Scaling JPA

• Prior to TopLink Grid, there were two strategies for 
scaling EclipseLink JPA applications into a cluster:
• Disable Shared Cache

• Cache Coordination—communicate changes via messaging



Strategy 1: Disable Shared Cache
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Disable Shared Cache

• Ensures all nodes have coherent view of data.

• Database is always right

• Each transaction queries all required data from database and 

constructs Entities

• No inter-node messaging

• Memory footprint of application increases as each 

transaction has a copy of each required Entity

• Every transaction pays object construction cost for 

queried Entities.

• Database becomes bottleneck



Strategy 2: Cache Coordination
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Cache Coordination

• Ensures all nodes have coherent view of data.

• Database is always right

• Fresh Entities retrieved from shared cache

• Stale Entities refreshed from database on access

• Creation and/or modification of Entity results in message to all 

other nodes

• Cost of coordinating 1 concurrent update per node is O(n2) as all 

nodes must be informed—cost of communication and processing 

may eventually exceed value of caching

• Shared cache size limited by heap of each node



Introducing TopLink Grid

• TopLink Grid allows Java developers to  transparently 
leverage the power of the Coherence data grid

• TopLink Grid combines:
• the simplicity of application development using the Java 

standard Java Persistence API (JPA) with

• the scalability and distributed processing power of Oracle’s 
Coherence Data Grid. 

• Supports 'JPA on the Grid' Architecture
• EclipseLink JPA applications using Coherence as a shared 

(L2) cache replacement along with configuration for more 
advanced usage



TopLink Grid with Coherence Cache
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Oracle Coherence Data Grid
Distributed in Memory Data Management

• Provides a reliable data 

tier with a single, 

consistent view of data

• Enables dynamic data 
capacity including fault 
tolerance and load 
balancing

• Ensures that data 
capacity scales with
processing capacity
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TopLink Grid—Configurations

• Grid Cache—Coherence as Shared (L2) Cache
• Configurable per Entity type

• Entities read by one grid member are put into Coherence and 
are immediately available across the entire grid

• Grid Read
• All supported read queries executed in the Coherence data 

grid

• All writes performed directly on the database by TopLink 
(synchronously) and Coherence updated

• Grid Entity
• All supported read queries and all writes are executed in the 

Coherence data grid



JPA Application

Grid Cache ('Cache Aside')

• Reading:

• Primary Key queries check 

Coherence first.

• If found in Coherence, Entity is 

returned.  

• If not found the database is 

queried.

• Entities queried from database 

are put() into Coherence and 

returned to the application.

• Writing:

• All inserts, updates, and deletes 

are directed to the database

• On successful commit, 

Coherence is updated
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Grid Cache—Leveraging Cache

• Cache is used when processing database results

• EclipseLink extracts primary keys from results and 

checks cache to avoid object construction.

• Even if a SQL query is executed, an object cache can 

still improve application throughput by eliminating 

object construction costs for cached Entities



Grid Entity—Reading

• Primary key queries result in 
get() on Coherence

• JPQL queries, e.g.,
Select e from Employee E

are translated to Filters and 
executed in Coherence

• The database is not queried 
by EclipseLink.

JPA Application

Query

PK
Query

CacheLoaders may be 
configured to query 
database with PK query 
on cache miss



Limitations in TopLink 11gR1

• TopLink Grid 11gR1 Supports single Entity queries 

with constraints on attributes, e.g.:
select e from Employee e where e.name = 'Joe'

• Complex queries must be executed on database:

• Multi-Entity queries or queries that traverse relationships 

('joins'), e.g.:
select e from Employee e 

where e.address.city = 'Bonn'

• Projection (Report) queries, e.g.:
select e.name, e.city from Employee e



Grid Entity—Writing

• Applications commit JPA 

transactions with new, 

deleted, or modified Entities

• EclipseLink put()s all new 

and updated Entities into 

Coherence and remove()s 

deleted Entities.
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Grid Read

• All writes performed directly 
on database.

• Primary key queries result in 
get() on Coherence

• JPQL queries, e.g.,
Select e from Employee E

are translated to Filters and 
executed in Coherence

• The database is not queried 
by EclipseLink.

• CacheLoaders should be 
configured to query database 
with PK query on cache miss
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Grid Enabling JPA Entities

• A single annotation is added to an Entity to enable 
Coherence usage, e.g.,

@Entity

@Customizer(CoherenceReadCustomizer.class)

public class Employee implements Serializable {

…
}

• Standard Coherence cache configuration applies

• POF, ExternalizableLite, and Serializable Entities supported



• Coherence does not provide support for the 
serialization of complex graphs across caches.
• Coherence serializes objects/object graphs and places the 

results in to a single cache under a key.

• Can't query or lazy load individual objects from the graph—all 
or nothing

TopLink Grid Relationship Support

a: [010111010]

Single Binary Object

JPA Application

Multiple Object
Graph

A

B C



• TopLink Grid 11gR1 does support storage of complex 
graphs of Entities with each Entity type stored in a 
corresponding Coherence cache.
• Relationship information is stored into Coherence and

reconstituted upon retrieval

• Can query for objects of class A, B, or C

• Lazy and eager relationships are supported—even to db data!

TopLink Grid Relationship Support

a: [010111010]

b: [110011010]

c: [101011010]

JPA Application

Multiple Object
Graph
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TopLink and Coherence: 

Objects, not Data

• TopLink's shared cache is an object cache

• Cache hits do not incur object construction costs—typically an 

expensive part of object/relational mapping

• Coherence caches serialized objects

• Using Coherence as TopLink's shared object cache

• Only incurs serialization cost, not object construction

• Can leverage POF serialization for maximum performance

• TopLink Grid pays the object construction cost only 

once and eliminates it for each cluster member



How is TopLink Grid different from 

Hibernate with Coherence?

• Hibernate does not cache objects, it caches data rows 

in Coherence

• Using Coherence as a cache for Hibernate

• Every cache hit incurs both object construction and

serialization costs

• Worse, object construction cost is paid by every cluster 

member for every cache hit

• Hibernate only uses Coherence as a cache—TopLink 

Grid is unique in supporting execution of queries 

against Coherence which can significantly offload the 

database and increase throughput



Summary

• TopLink supports a unique range of strategies for 

scaling JPA applications

• TopLink Grid provides:

• An easy way for JPA developers to scale out their Java 

EE applications

• 'JPA on the Grid' functionality to support scaling JPA 

applications with Coherence

• Support for caching Entities with relationships in Coherence




