
Multicore programming in
Haskell

Simon Marlow

Microsoft Research

A concurrent web server

server :: Socket -> IO ()
server sock =
forever

(do
acc <- Network.accept sock
forkIO (http acc)

)

create a new thread
for each new client

the client/server
protocol is implemented
in a single-threaded way

Concurrency = abstraction

• Threads let us implement individual
interactions separately, but have them happen
“at the same time”

• writing this with a single event loop is complex
and error-prone

• Concurrency is for making your program
cleaner.

More uses for threads

• for hiding latency

– e.g. downloading multiple web pages

• for encapsulating state

– talk to your state via a channel

• for making a responsive GUI

• fault tolerance, distribution

• ... for making your program faster?

– are threads a good abstraction for multicore?

Parallelism

Why is concurrent programming hard?

• non-determinism
– threads interact in different ways depending on the

scheduler

– programmer has to deal with this somehow: locks,
messages, transactions

– hard to think about

– impossible to test exhaustively

• can we get parallelism without non-
determinism?

What Haskell has to offer

• Purely functional by default

– computing pure functions in parallel is deterministic

• Type system guarantees absence of side-effects

• Great facilities for abstraction

– Higher-order functions, polymorphism, lazy evaluation

• Wide range of concurrency paradigms

• Great tools

The rest of the talk

• Parallel programming in Haskell

• Concurrent data structures in Haskell

Parallel programming in Haskell

par :: a -> b -> b

Evaluate the first
argument in parallel

return the second
argument

Parallel programming in Haskell

par :: a -> b -> b
pseq :: a -> b -> b

Evaluate the first
argument

Return the second
argument

import Control.Parallel

main =
let

p = primes !! 3500
q = nqueens 12

in
par p (pseq q (print (p,q))

primes = ...
nqueens = ...

Using par and pseq

This does not
calculate the value
of p. It allocates a

suspension, or
thunk, for

(primes !! 3500)

par p $ pseq q $ print (p,q)

write it like this if you
want (a $ b = a b)

result:
• p is sparked by par
• q is evaluated by pseq
• p is demanded by print
• (p,q) is printed

pseq evaluates q
first, then returns

(print (p,q))

par indicates that p
could be evaluated

in parallel with
(pseq q (print (p,q))

ThreadScope

Zooming in...

The spark is picked up
here

CPU 2CPU 1

How does par actually work?

CPU 0

Thread 1 Thread 2Thread 3

?

Correctness-preserving optimisation

• Replacing “par a b” with “b” does not change
the meaning of the program

– only its speed and memory usage

– par cannot make the program go wrong

– no race conditions or deadlocks, guaranteed!

• par looks like a function, but behaves like an
annotation

par a b == b

How to use par

• par is very cheap: a write into a circular buffer

• The idea is to create a lot of sparks

– surplus parallelism doesn’t hurt

– enables scaling to larger core counts without
changing the program

• par allows very fine-grained parallelism

– but using bigger grains is still better

The N-queens problem

Place n queens on an n x n
board such that no queen

attacks any other, horizontally,
vertically, or diagonally

N queens

[1]

[1,1]

[2,1]

[3,1]

[4,1]

...

[1,3,1]

[2,3,1]

[3,3,1]

[4,3,1]

[5,3,1]

[6,3,1]

...

[]

[2]

...

N-queens in Haskell

nqueens :: Int -> [[Int]]
nqueens n = subtree n []
where

children :: [Int] -> [[Int]]
children b = [(q:b) | q <- [1..n],

safe q b]

subtree :: Int -> [Int] -> [[Int]]
subtree 0 b = [b]
subtree c b =
concat $
map (subtree (c-1)) $
children b

safe :: Int -> [Int] -> Bool
...

A board is represented as a
list of queen rows

children calculates the
valid boards that can
be made by adding

another queen

subtree calculates all
the valid boards

starting from the given
board by adding c

more columns

Parallel N-queens

• How can we parallelise this?

• Divide and conquer

– aka map/reduce

– calculate subtrees in parallel,
join the results

[1]

[]

[2]

...

Parallel N-queens

nqueens :: Int -> [[Int]]
nqueens n = subtree n []
where

children :: [Int] -> [[Int]]
children b = [(q:b) | q <- [1..n],

safe q b]

subtree :: Int -> [Int] -> [[Int]]
subtree 0 b = [b]
subtree c b =
concat $
parList $
map (subtree (c-1)) $
children b

parList :: [a] -> b -> b

parList is not built-in magic...

parList :: [a] -> b -> b
parList [] b = b
parList (x:xs) b = par x $ parList xs b

• It is defined using par:

• (full disclosure: in N-queens we need a slightly
different version in order to fully evaluate the
nested lists)

Results

• Speedup: 3.5 on 6 cores

• We can do better...

How many sparks?

SPARKS: 5151164 (5716 converted, 4846805 pruned)

• The cost of creating a spark for every tree node is
high

• sparks near the leaves are cheap

• Parallelism works better when the work units are
large (coarse-grained parallelism)

• But we don’t want to be too coarse, or there
won’t be enough grains

• Solution: parallelise down to a certain depth

Bounding the parallel depth

subtree :: Int -> [Int] -> [[Int]]
subtree 0 b = [b]
subtree c b =

concat $
maybeParList c $
map (subtree (c-1)) $
children b

maybeParList c
| c < threshold = id
| otherwise = parList

change parList into
maybeParLIst

below the threshold,
maybeParList is “id” (do

nothing)

Results...

• Speedup: 4.7 on 6 cores

– depth 3

– ~1000 sparks

Can this be improved?

• There is more we could do here, to optimise
both sequential and parallel performance

• but we got good results with only a little effort

Original sequential version

• However, we did have to change the original
program... trees good, lists bad:

nqueens :: Int -> [[Int]]
nqueens n = gen n
where

gen :: Int -> [[Int]]
gen 0 = [[]]
gen c = [(q:b) | b <- gen (c-1),

q <- [1..n],
safe q b]

• c.f. Guy Steele “Organising Functional Code for
Parallel Execution”

Raising the level of abstraction

• Lowest level: par/pseq

• Next level: parList

• A general abstraction: Strategies1

1Algorithm + strategy = parallelism, Trinder et. al., JFP 8(1),1998

A value of type Strategy a is a policy
for evaluating things of type a

• a strategy for evaluating components of a pair in
parallel, given a Strategy for each component

parPair :: Strategy a -> Strategy b -> Strategy (a,b)

Define your own Strategies

• Strategies are just an abstraction, defined in
Haskell, on top of par/pseq

data Tree a = Leaf a | Node [Tree a]

parTree :: Int -> Strategy (Tree [Int])
parTree 0 tree = rdeepseq tree
parTree n (Leaf a) = return (Leaf a)
parTree n (Node ts) = do
us <- parList (parTree (n-1)) ts
return (Node us)

type Strategy a = a -> Eval a
using :: a -> Strategy a -> a

A strategy that
evaluates a tree in

parallel up to the given
depth

Refactoring N-queens

data Tree a = Leaf a | Node [Tree a]

leaves :: Tree a -> [a]

nqueens n = leaves (subtree n [])
where
subtree :: Int -> [Int] -> Tree [Int]
subtree 0 b = Leaf b
subtree c b = Node (map (subtree (c-1)) (children b))

Refactoring N-queens

• Now we can move the parallelism to the outer
level:

nqueens n = leaves (subtree n [] `using` parTree 3)

Modular parallelism

• The description of the parallelism can be
separate from the algorithm itself

– thanks to lazy evaluation: we can build a
structured computation without evaluating it, the
strategy says how to evaluate it

– don’t clutter your code with parallelism

– (but be careful about space leaks)

Parallel Haskell, summary

• par, pseq, and Strategies let you annotate purely
functional code for parallelism

• Adding annotations does not change what the program
means
– no race conditions or deadlocks

– easy to experiment with

• ThreadScope gives visual feedback

• The overhead is minimal, but parallel programs scale

• You still have to understand how to parallelise the
algorithm!

• Complements concurrency

Take a deep breath...

• ... we’re leaving the purely functional world
and going back to threads and state

Concurrent data structures

• Concurrent programs often need shared data
structures, e.g. a database, or work queue, or
other program state

• Implementing these structures well is
extremely difficult

• So what do we do?
– let Someone Else do it (e.g. Intel TBB)

• but we might not get exactly what we want

– In Haskell: do it yourself...

Case study: Concurrent Linked Lists

newList :: IO (List a)

addToTail :: List a -> a -> IO ()

find :: Eq a => List a -> a -> IO Bool

delete :: Eq a => List a -> a -> IO Bool

Creates a new (empty) list

Adds an element to the tail of the list

Returns True if the list contains the given element

Deletes the given element from the list;
returns True if the list contained the element

Choose your weapon

CAS: atomic compare-and-swap,
accurate but difficult to use

MVar: a locked mutable variable.
Easier to use than CAS.

STM: Software Transactional
Memory. Almost impossible to
go wrong.

STM implementation

• Nodes are linked with transactional variables

data List a = Null
| Node { val :: a,

next :: TVar (List a) }

• Operations perform a transaction on the
whole list: simple and straightforward to
implement

• What about without STM, or if we want to
avoid large transactions?

What can go wrong?

1 2 3 4

thread 1: “delete 2” thread 2: “delete 3”

Fixing the race condition

2 3

thread 2: “delete 3”

Swinging the pointer will
not physically delete the
element now, it has to be

removed later

1

thread 1: “delete 2”

2d 3d 4

Adding “lazy delete”

• Now we have a deleted node:
data List a = Null

| Node { val :: a,
next :: TVar (List a) }

| DelNode { next :: TVar (LIst a) }

• Traversals should drop deleted nodes that
they find.

• Transactions no longer take place on the
whole list, only pairs of nodes at a time.

We built a few implementations...

• Full STM

• Various “lazy delete” implementations:

– STM

– MVar, hand-over-hand locking

– CAS

– CAS (using STM)

– MVar (using STM)

Results

0.1

1

10

100

1000

1 2 3 4 5 6 7 8

Time(s)

Processors

CAS

CASusingSTM

LAZY

MLC

MLCusingSTM

STM

Results (scaling)

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

Speedup

Procoessors

CAS

CASusingSTM

LAZY

MLC

MLCusingSTM

STM

So what?

• Large STM transactions don’t scale

• The fastest implementations use CAS

• but then we found a faster implementation...

A latecomer wins the race...

0.1

1

10

100

1000

1 2 3 4 5 6 7 8

Time(s)

Processors

CAS

CASusingSTM

LAZY

MLC

MLCusingSTM

STM

???

And the winner is...

• Ordinary immutable lists stored in a single
mutable variable

• trivial to define the operations

• reads are fast and automatically concurrent:

– immutable data is copy-on-write

– a read grabs a snapshot

• but what about writes? Var = ???

type List a = Var [a]

Choose your weapon

IORef (unsynchronised mutable
variable)

MVar (locked mutable variable)

TVar (STM)

Built-in lock-free updates

• IORef provides this clever operation:

atomicModifyIORef
:: IORef a
-> (a -> (a,b))
-> IO b

Takes a mutable
variable

and a function to
compute the new value

(a) and a result (b)

Returns the resultatomicModifyIORef r f = do
a <- readIORef r
let (new, b) = f a
writeIORef r new
return b

Lazily!

Updating the list...

• delete 2

IORef

(:)

1 2

(:)

delete 2

An unevaluated computation
representing the value of

applying delete 2,
NB. a pure operation.

The reason this works is
lazy evaluation

Lazy immutable = parallel

• reads can happen in parallel with other
operations, automatically

• tree-shaped structures work well: operations
in branches can be computed in parallel

• lock-free: impossible to prevent other threads
from making progress

• The STM variant is composable

Ok, so why didn’t we see scaling?

• this is a shared data structure, a single point of
contention

• memory bottlenecks, cache bouncing

• possibly: interactions with generational GC

• but note that we didn’t see a slowdown either

A recipe for concurrent data structures

• Haskell has lots of libraries providing high-
performance pure data structures

• trivial to make them concurrent:

type ConcSeq a = IORef (Seq a)
type ConcTree a = IORef (Tree a)
type ConcMap k v = IORef (Map k v)
type ConcSet a = IORef (Set a)

Conclusions...

• Thinking concurrent (and parallel):

– Immutable data and pure functions

• eliminate unnecessary interactions

– Declarative programming models say less about
“how”, giving the implementation more freedom

• SQL/LINQ/PLINQ

• map/reduce

• .NET TPL: declarative parallelism in .NET

• F# async programming

• Coming soon: Data Parallel Haskell

Try it out...

• Haskell: http://www.haskell.org/

• GHC: http://www.haskell.org/ghc

• Libraries: http://hackage.haskell.org/

• News: http://www.reddit.com/r/haskell

• me: Simon Marlow <simonmar@microsoft.com>

