
Multicore programming in 
Haskell

Simon Marlow

Microsoft Research



A concurrent web server

server :: Socket -> IO ()
server sock = 
forever 

(do
acc <- Network.accept sock
forkIO (http acc)

)

create a new thread 
for each new client

the client/server 
protocol is implemented 
in a single-threaded way 



Concurrency = abstraction

• Threads let us implement individual 
interactions separately, but have them happen 
“at the same time”

• writing this with a single event loop is complex 
and error-prone

• Concurrency is for making your program 
cleaner.



More uses for threads

• for hiding latency

– e.g. downloading multiple web pages

• for encapsulating state

– talk to your state via a channel

• for making a responsive GUI

• fault tolerance, distribution

• ... for making your program faster?

– are threads a good abstraction for multicore?

Parallelism



Why is concurrent programming hard?

• non-determinism
– threads interact in different ways depending on the 

scheduler

– programmer has to deal with this somehow: locks, 
messages, transactions

– hard to think about

– impossible to test exhaustively

• can we get parallelism without non-
determinism?



What Haskell has to offer

• Purely functional by default

– computing pure functions in parallel is deterministic

• Type system guarantees absence of side-effects

• Great facilities for abstraction

– Higher-order functions, polymorphism, lazy evaluation

• Wide range of concurrency paradigms

• Great tools



The rest of the talk

• Parallel programming in Haskell

• Concurrent data structures in Haskell



Parallel programming in Haskell

par :: a -> b -> b

Evaluate the first 
argument in parallel

return the second 
argument



Parallel programming in Haskell

par  :: a -> b -> b
pseq :: a -> b -> b

Evaluate the first 
argument

Return the second 
argument



import Control.Parallel

main =
let 

p = primes !! 3500
q = nqueens 12

in
par p (pseq q (print (p,q))

primes = ...
nqueens = ...

Using par and pseq

This does not 
calculate the value 
of p.  It allocates a 

suspension, or 
thunk, for

(primes !! 3500)

par p $ pseq q $ print (p,q)

write it like this if you 
want (a $ b = a b)

result: 
• p is sparked by par
• q is evaluated by pseq
• p is demanded by print
• (p,q) is printed

pseq evaluates q 
first, then returns 

(print (p,q))

par indicates that p 
could be evaluated 

in parallel with 
(pseq q (print (p,q))



ThreadScope



Zooming in...

The spark is picked up 
here



CPU 2CPU 1

How does par actually work?

CPU 0

Thread 1 Thread 2Thread 3

?



Correctness-preserving optimisation

• Replacing “par a b” with “b” does not change 
the meaning of the program

– only its speed and memory usage

– par cannot make the program go wrong

– no race conditions or deadlocks, guaranteed!

• par looks like a function, but behaves like an 
annotation

par a b == b



How to use par

• par is very cheap: a write into a circular buffer

• The idea is to create a lot of sparks

– surplus parallelism doesn’t hurt

– enables scaling to larger core counts without 
changing the program

• par allows very fine-grained parallelism

– but using bigger grains is still better



The N-queens problem

Place n queens on an n x n
board such that no queen 

attacks any other, horizontally, 
vertically, or diagonally 



N queens

[1]

[1,1]

[2,1]

[3,1]

[4,1]

...

[1,3,1]

[2,3,1]

[3,3,1]

[4,3,1]

[5,3,1]

[6,3,1]

...

[]

[2]

...



N-queens in Haskell

nqueens :: Int -> [[Int]]
nqueens n = subtree n []
where

children :: [Int] -> [[Int]]
children b = [ (q:b) | q <- [1..n],

safe q b ]

subtree :: Int -> [Int] -> [[Int]]
subtree 0 b = [b]
subtree c b = 
concat $
map (subtree (c-1)) $
children b

safe :: Int -> [Int] -> Bool
...

A board is represented as a 
list of queen rows

children calculates the 
valid boards that can 
be made by adding 

another queen

subtree calculates all 
the valid boards 

starting from the given 
board by adding c

more columns



Parallel N-queens

• How can we parallelise this?

• Divide and conquer

– aka map/reduce

– calculate subtrees in parallel, 
join the results

[1]

[]

[2]

...



Parallel N-queens

nqueens :: Int -> [[Int]]
nqueens n = subtree n []
where

children :: [Int] -> [[Int]]
children b = [ (q:b) | q <- [1..n],

safe q b ]

subtree :: Int -> [Int] -> [[Int]]
subtree 0 b = [b]
subtree c b = 
concat $
parList $
map (subtree (c-1)) $
children b

parList :: [a] -> b -> b



parList is not built-in magic...

parList :: [a] -> b -> b
parList []     b = b
parList (x:xs) b = par x $ parList xs b

• It is defined using par:

• (full disclosure: in N-queens we need a slightly 
different version in order to fully evaluate the 
nested lists)



Results

• Speedup: 3.5 on 6 cores

• We can do better...



How many sparks?

SPARKS: 5151164 (5716 converted, 4846805 pruned)

• The cost of creating a spark for every tree node is 
high

• sparks near the leaves are cheap

• Parallelism works better when the work units are 
large (coarse-grained parallelism)

• But we don’t want to be too coarse, or there 
won’t be enough grains

• Solution: parallelise down to a certain depth



Bounding the parallel depth

subtree :: Int -> [Int] -> [[Int]]
subtree 0 b = [b]
subtree c b = 

concat $
maybeParList c $
map (subtree (c-1)) $
children b

maybeParList c
| c < threshold = id
| otherwise     = parList

change parList into 
maybeParLIst

below the threshold, 
maybeParList is “id” (do 

nothing)



Results...

• Speedup: 4.7 on 6 cores 

– depth 3

– ~1000 sparks



Can this be improved?

• There is more we could do here, to optimise 
both sequential and parallel performance

• but we got good results with only a little effort



Original sequential version

• However, we did have to change the original 
program... trees good, lists bad:

nqueens :: Int -> [[Int]]
nqueens n = gen n
where

gen :: Int -> [[Int]]
gen 0 = [[]]
gen c = [ (q:b) | b <- gen (c-1),

q <- [1..n],
safe q b]

• c.f. Guy Steele “Organising Functional Code for 
Parallel Execution”



Raising the level of abstraction

• Lowest level: par/pseq

• Next level: parList

• A general abstraction: Strategies1

1Algorithm + strategy = parallelism, Trinder et. al., JFP 8(1),1998

A value of type  Strategy a is a policy 
for evaluating things of type a

• a strategy for evaluating components of a pair in 
parallel, given a Strategy for each component

parPair :: Strategy a -> Strategy b -> Strategy (a,b)



Define your own Strategies

• Strategies are just an abstraction, defined in 
Haskell, on top of par/pseq

data Tree a = Leaf a | Node [Tree a]

parTree :: Int -> Strategy (Tree [Int])
parTree 0 tree      = rdeepseq tree
parTree n (Leaf a)  = return (Leaf a)
parTree n (Node ts) = do
us <- parList (parTree (n-1)) ts
return (Node us)

type Strategy a = a -> Eval a
using :: a -> Strategy a -> a

A strategy that 
evaluates a tree in 

parallel up to the given 
depth



Refactoring N-queens

data Tree a = Leaf a | Node [Tree a]

leaves :: Tree a -> [a]

nqueens n = leaves (subtree n [])
where
subtree :: Int -> [Int] -> Tree [Int]
subtree 0 b = Leaf b
subtree c b = Node (map (subtree (c-1)) (children b))



Refactoring N-queens

• Now we can move the parallelism to the outer 
level:

nqueens n = leaves (subtree n [] `using` parTree 3)



Modular parallelism

• The description of the parallelism can be 
separate from the algorithm itself

– thanks to lazy evaluation: we can build a 
structured computation without evaluating it, the 
strategy says how to evaluate it

– don’t clutter your code with parallelism

– (but be careful about space leaks)



Parallel Haskell, summary

• par, pseq, and Strategies let you annotate purely 
functional code for parallelism

• Adding annotations does not change what the program 
means
– no race conditions or deadlocks

– easy to experiment with

• ThreadScope gives visual feedback

• The overhead is minimal, but parallel programs scale

• You still have to understand how to parallelise the 
algorithm!

• Complements concurrency



Take a deep breath...

• ... we’re leaving the purely functional world 
and going back to threads and state



Concurrent data structures

• Concurrent programs often need shared data 
structures, e.g. a database, or work queue, or 
other program state

• Implementing these structures well is 
extremely difficult

• So what do we do?
– let Someone Else do it (e.g. Intel TBB)

• but we might not get exactly what we want

– In Haskell: do it yourself...



Case study: Concurrent Linked Lists

newList   :: IO (List a)

addToTail :: List a -> a -> IO ()

find      :: Eq a => List a -> a -> IO Bool

delete    :: Eq a => List a -> a -> IO Bool

Creates a new (empty) list

Adds an element to the tail of the list

Returns True if the list contains the given element

Deletes the given element from the list; 
returns True if the list contained the element



Choose your weapon

CAS: atomic compare-and-swap, 
accurate but difficult to use 

MVar: a locked mutable variable.  
Easier to use than CAS.

STM: Software Transactional 
Memory.  Almost impossible to 
go wrong.



STM implementation

• Nodes are linked with transactional variables

data List a = Null
| Node { val :: a, 

next :: TVar (List a) }

• Operations perform a transaction on the 
whole list: simple and straightforward to 
implement

• What about without STM, or if we want to 
avoid large transactions?



What can go wrong?

1 2 3 4

thread 1: “delete 2” thread 2: “delete 3”



Fixing the race condition

2 3

thread 2: “delete 3”

Swinging the pointer will 
not physically delete the 
element now, it has to be 

removed later

1

thread 1: “delete 2”

2d 3d 4



Adding “lazy delete”

• Now we have a deleted node:
data List a = Null

| Node    { val  :: a, 
next :: TVar (List a) }

| DelNode { next :: TVar (LIst a) }

• Traversals should drop deleted nodes that 
they find.

• Transactions no longer take place on the 
whole list, only pairs of nodes at a time.



We built a few implementations...

• Full STM

• Various “lazy delete” implementations:

– STM

– MVar, hand-over-hand locking

– CAS

– CAS (using STM)

– MVar (using STM)



Results
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Results (scaling)
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So what?

• Large STM transactions don’t scale

• The fastest implementations use CAS

• but then we found a faster implementation...



A latecomer wins the race...

0.1

1

10

100

1000

1 2 3 4 5 6 7 8

Time(s)

Processors

CAS

CASusingSTM

LAZY

MLC

MLCusingSTM

STM

???



And the winner is...

• Ordinary immutable lists stored in a single 
mutable variable

• trivial to define the operations

• reads are fast and automatically concurrent:

– immutable data is copy-on-write

– a read grabs a snapshot

• but what about writes?  Var = ???

type List a = Var [a]



Choose your weapon

IORef (unsynchronised mutable 
variable)

MVar (locked mutable variable)

TVar (STM)



Built-in lock-free updates

• IORef provides this clever operation:

atomicModifyIORef 
:: IORef a
-> (a -> (a,b))
-> IO b

Takes a mutable 
variable

and a function to 
compute the new value 

(a) and a result (b)

Returns the resultatomicModifyIORef r f = do
a <- readIORef r
let (new, b) = f a
writeIORef r new
return b

Lazily!



Updating the list...

• delete 2

IORef

(:)

1 2

(:)

delete 2

An unevaluated computation 
representing the value of 

applying delete 2,
NB. a pure operation.

The reason this works is 
lazy evaluation



Lazy immutable = parallel

• reads can happen in parallel with other 
operations, automatically

• tree-shaped structures work well: operations 
in branches can be computed in parallel

• lock-free: impossible to prevent other threads 
from making progress

• The STM variant is composable



Ok, so why didn’t we see scaling?

• this is a shared data structure, a single point of 
contention

• memory bottlenecks, cache bouncing

• possibly: interactions with generational GC

• but note that we didn’t see a slowdown either



A recipe for concurrent data structures

• Haskell has lots of libraries providing high-
performance pure data structures

• trivial to make them concurrent:

type ConcSeq a   = IORef (Seq a)
type ConcTree a  = IORef (Tree a)
type ConcMap k v = IORef (Map k v)
type ConcSet a   = IORef (Set a)



Conclusions...

• Thinking concurrent (and parallel):

– Immutable data and pure functions

• eliminate unnecessary interactions

– Declarative programming models say less about 
“how”, giving the implementation more freedom

• SQL/LINQ/PLINQ

• map/reduce

• .NET TPL: declarative parallelism in .NET

• F# async programming

• Coming soon: Data Parallel Haskell



Try it out...

• Haskell: http://www.haskell.org/

• GHC: http://www.haskell.org/ghc

• Libraries: http://hackage.haskell.org/

• News: http://www.reddit.com/r/haskell

• me: Simon Marlow <simonmar@microsoft.com>


