Multicore programming in
Haskell

Simon Marlow

Microsoft Research

A concurrent web server

server :: Socket -> I0 ()
server sock =
forever
(do
acc <- Network.accept sock
forkIo (http acc)

create a new thread the client/server

for each new client protocol is implemented
in a single-threaded way

Concurrency = abstraction

* Threads let us implement individual
interactions separately, but have them happen
“at the same time”

* writing this with a single event loop is complex
and error-prone

* Concurrency is for making your program
cleaner.

More uses for threads

e for hiding latency
— e.g. downloading multiple web pages

e for encapsulating state
— talk to your state via a channel

e for making a responsive GUI

e fault tolerance, distribution Parallelism

e ... for making your program faster?

— are threads a good abstraction for multicore?

Why is concurrent programming hard?

e non-determinism

— threads interact in different ways depending on the
scheduler

— programmer has to deal with this somehow: locks,
messages, transactions

— hard to think about
— impossible to test exhaustively

e can we get parallelism without non-
determinism?

What Haskell has to offer

* Purely functional by default

— computing pure functions in parallel is deterministic
* Type system guarantees absence of side-effects
* Great facilities for abstraction

— Higher-order functions, polymorphism, lazy evaluation
* Wide range of concurrency paradigms
* Great tools

The rest of the talk

* Parallel programming in Haskell
* Concurrent data structures in Haskell

Parallel programming in Haskell

Evaluate the first return the second
argument in parallel argument

Parallel programming in Haskell

Evaluate the first Return the second
argument argument

Using par and pseqg

This does not

import Control.Parallel

par indicates that p
could be evaluated
in parallel with

(pseq q (print (p,q))
in

par ISSPSCUmmm—mTL (D, G * p is demanded by print
primes = ... * (p,q) is printed

nqueens = ...
A write it like this if you

want(a $ b = a b)

ThreadScope

=

File View Help

Q@

Activity Profile [«
1s

b HECs o

Activity

create thread |run spark |thread runnable ' seq GCreq |par GCreq |migrate thread |thread wakeup |shutdown

running GC

parl.eventlog (18858 events, 1.037s)

/ooming in...

2.37ms 2.38Bms 2.39ms

The spark is picked up
here

How does par actually work?

Correctness-preserving optimisation

* Replacing “par a b” with “b” does not change
the meaning of the program
— only its speed and memory usage
— par cannot make the program go wrong
— no race conditions or deadlocks, guaranteed!

e par looks like a function, but behaves like an
annotation

How to use par

e parisvery cheap: a write into a circular buffer
 The idea is to create a lot of sparks

— surplus parallelism doesn’t hurt

— enables scaling to larger core counts without
changing the program

e par allows very fine-grained parallelism
— but using bigger grains is still better

The N-queens problem

Place n queens on an n xn
board such that no queen

attacks any other, horizontally,
vertically, or diagonally

N queens

(17

| [2. 3
331

[1]

[2]

N-queens in Haskell

nqueens :: Int -> [[Int]] ~ Aboard is represented as a
nqueens n = subtree n [] -=~‘-‘_~‘L [l T p—
where
children :: [Int] -> [[Int]]
children b = [(gq:b) | g <- [1..n],/ children calculates the
safe q b] valid boards that can

be made by adding
subtree :: Int -> [Int] -> [[Int]] another queen

subtree 0 b = [b]

subtree c b = " oo af
concat $ subtree calculates a

map (subtree (c-1)) $ thevamjbomd?
children b starting from the given
board by adding ¢
more columns

safe :: Int -> [Int] -> Bool

Parallel N-queens

* How can we parallelise this?

* Divide and conquer
— aka map/reduce

— calculate subtrees in parallel,
join the results

[1]

[2]

Parallel N-queens

nqueens :: Int -> [[Int]]
nqueens n = subtree n []
where

children :: [Int] -> [[Int]]

children b = [(q:b) | q <- [1..n],
safe g b]

subtree :: Int -> [Int] -> [[Int]]
subtree 0 b [b]

subtree c b : .))
concat $ 7 parList :: [a] -> b -> b

parList $
map (subtree (c-1)) $

children b

parlList is not built-in magic...

* |tis defined using par:

parList :: [a] -> b -> b

parList [] b b
parList (x:xs) b = par x $ parList xs b

 (full disclosure: in N-queens we need a slightly
different version in order to fully evaluate the
nested lists)

Results

* Speedup: 3.5 on 6 cores

01s 0.2s 0.3s 0.4s 0.55 0.65 0.7s 0.8s 0.9s 1s 11s 12s 1.3s 1l4s 155

|—|—|—|—I—|—I—I—|—I—|—I—I—|—|—|_
[011 TN (] | W ORI 00 OO LR IRE
0) T TR IR (U COREER R Um0 AT AR RO

e We can do better...

How many sparks?

SPARKS: 5151164 (5716 converted, 4846805 pruned)

* The cost of creating a spark for every tree node is
high
e sparks near the leaves are cheap

e Parallelism works better when the work units are
large (coarse-grained parallelism)

* But we don’t want to be too coarse, or there
won’t be enough grains

* Solution: parallelise down to a certain depth

Bounding the parallel depth

subtree :: Int -> [Int] -> [[Int]]

subtree 0 b = [b] change parList into

subtree c b maybeParLlst
concat $

maybeParList c $ below the threshold,

map (subtree (c-1)) $ e
T Ty maybeParlList is “id” (do

nothing)

maybeParList c
| ¢ < threshold 1d
| otherwise parList

Results...

* Speedup: 4.7 on 6 cores
— depth 3
— ~1000 sparks

Can this be improved?

* There is more we could do here, to optimise
both sequential and parallel performance

* but we got good results with only a little effort

Original sequential version

* However, we did have to change the original
program... trees good, lists bad:

nqueens :: Int -> [[Int]]
nqueens n = gen n
where

gen :: Int -> [[Int]]

gen [[]]

gen [(g:b) | b <- gen (c-1),
qg <- [1..n],
safe g b]

e c.f. Guy Steele “Organising Functional Code for
Parallel Execution”

Raising the level of abstraction

* Lowest level: par/pseq
* Next level: parList
* A general abstraction: Strategies?

A value of type Strategy a isa policy
for evaluating things of type a

parPair :: Strategy a -> Strategy b -> Strategy (a,b)

e astrategy for evaluating components of a pair in
parallel, given a Strategy for each component

'Algorithm + strategy = parallelism, Trinder et. al., JFP 8(1),1998

Define your own Strategies

e Strategies are just an abstraction, defined in
Haskell, on top of par/pseq

type Strategy a = a -> Eval a
using :: a -> Strategy a -> a

data Tree a = Leaf a | Node [Tree a]

parTree :: Int -> Strategy (Tree [Int]) A strategy that
parTree 0 tree rdeepseq tree evaluates a tree in
parTree n (Leaf a) return (Leaf a) parallel up to the given
parTree n (Node ts) = do depth

us <- parList (parTree (n-1)) ts

return (Node us)

Refactoring N-queens

data Tree a = Leaf a | Node [Tree a]j

leaves :: Tree a -> [a]

nqueens n = leaves (subtree n [])

where

subtree :: Int -> [Int] -> Tree [Int]

subtree 0 b Leaf b

subtree c b Node (map (subtree (c-1)) (children b))

Refactoring N-queens

* Now we can move the parallelism to the outer
level:

nqueens n = leaves (subtree n [] wusing parTree 3)

Modular parallelism

 The description of the parallelism can be
separate from the algorithm itself

— thanks to lazy evaluation: we can build a
structured computation without evaluating it, the
strategy says how to evaluate it

— don’t clutter your code with parallelism
— (but be careful about space leaks)

Parallel Haskell, summary

e par, pseq, and Strategies let you annotate purely
functional code for parallelism

* Adding annotations does not change what the program
means

— no race conditions or deadlocks
— easy to experiment with

 ThreadScope gives visual feedback
* The overhead is minimal, but parallel programs scale

* You still have to understand how to parallelise the
algorithm!

* Complements concurrency

Take a deep breath...

e ...we're leaving the purely functional world
and going back to threads and state

Concurrent data structures

* Concurrent programs often need shared data
structures, e.g. a database, or work queue, or
other program state

* Implementing these structures well is
extremely difficult

e So what do we do?

— let Someone Else do it (e.g. Intel TBB)
* but we might not get exactly what we want

— In Haskell: do it yourself...

Case study: Concurrent Linked Lists

Creates a new (empty) list

Adds an element to the tail of the list

Returns True if the list contains the given element

Deletes the given element from the list;
returns True if the list contained the element

Choose your weapon

CAS: atomic compare-and-swap,
accurate but difficult to use

JE==—" MVar: a locked mutable variable.
/\ Easier to use than CAS.

STM: Software Transactional

Memory. Almost impossible to
go wrong.

STM implementation

* Nodes are linked with transactional variables

data List a = Null

| Node { val :: a,
next :: Tvar (List a) }

* Operations perform a transaction on the
whole list: simple and straightforward to
implement

e What about without STM, or if we want to
avoid large transactions?

What can go wrong?

o—D-—o-n

e M

Fixing the race condition

/'\|

oo oo

e D

Adding “lazy delete”

e Now we have a deleted node:

data List a = Null
| Node { val :: a,

next :: Tvar (List a) }
| DelNode { next :: Tvar (LIst a) }

* Traversals should drop deleted nodes that
they find.

* Transactions no longer take place on the
whole list, only pairs of nodes at a time.

We built a few implementations...

* Full STM

* Various “lazy delete” implementations:
—STM
— MVar, hand-over-hand locking
— CAS
— CAS (using STM)
— MVar (using STM)

Results

Processors

—o—CAS

- CASusingSTM
——LAZY

=><=MLC
=#=MLCusingSTM
=0-STM

Results (scaling)

4 5

Procoessors

—o—CAS

=~ CASusingSTM
—A—LAZY
=><=MLC
=#=MLCusingSTM
=0-STM

So what?

* Large STM transactions don’t scale
* The fastest implementations use CAS
* but then we found a faster implementation...

A latecomer wins the race...

Processors

—o—CAS

- CASusingSTM
——LAZY

=><=MLC
=#=MLCusingSTM
=0-STM

i P PP

And the winner is...

type L1st a = var [a]

* Ordinary immutable lists stored in a single
mutable variable

* trivial to define the operations

* reads are fast and automatically concurrent:
— immutable data is copy-on-write

— a read grabs a snapshot
* but what about writes? Var = ???

Choose your weapon

Aef (unsynchronised mutable
variable)

J==" MVar (locked mutable variable)

¢

i

TVar (STM)

Built-in lock-free updates

* |ORef provides this clever operation:

atomicModifyIORef Takes a mutable
:: IORef a variable

-> (a -> (a,b))
-> I0 b

and a function to
compute the new value
(a) and a result (b)

atomicModifyIOorRef r f = do Returns the result
a <- readIORef r
let (new, b) = f a
writeIORef r new
return b

Updating the list...

An unevaluated computation
representing the value of
applying delete 2,

NB. a pure operation.

u The reason this works is
lazy evaluation
()| () | —

e delete 2

“Toref |,

Lazy immutable = parallel

* reads can happen in parallel with other
operations, automatically

* tree-shaped structures work well: operations
in branches can be computed in parallel

* lock-free: impossible to prevent other threads
from making progress

 The STM variant is composable

Ok, so why didn’t we see scaling?

* thisis a shared data structure, a single point of
contention

* memory bottlenecks, cache bouncing
e possibly: interactions with generational GC
* but note that we didn’t see a slowdown either

A recipe for concurrent data structures

* Haskell has lots of libraries providing high-
performance pure data structures

e trivial to make them concurrent:

IORef (Seqg a)
IORef (Tree a)
IORef (Map k v)
IORef (Set a)

concSeq a
concTree a
concMap k v
concSet a

Conclusions...

* Thinking concurrent (and parallel):

— Immutable data and pure functions
* eliminate unnecessary interactions

— Declarative programming models say less about

“how”, giving the implementation more freedom

* SQL/LINQ/PLINQ
* map/reduce

.NET TPL: declarative parallelism in .NET

F# async programming

Coming soon: Data Parallel Haskell

Try it out...

* Haskell: http://www.haskell.org/

* GHC: http://www.haskell.org/ghc

* Libraries: http://hackage.haskell.org/

* News: http://www.reddit.com/r/haskell

* me: Simon Marlow <simonmar@ microsoft.com>

