Erlang Solutions Ltd

Death by Accidental Complexity

QCon
London, March 12, 2010
ULf Wiger, CTO Erlang Solutions Ltd.

UIf Wiger

ulf.wiger@erlang-solutions.com

Brain-dead concurrency

» A.k.a. Embarrassingly Parallel

> E.g. Plain web server
= Minimal dependencies, request/reply pattern

_A
-
.
TN

Y

0 m

Copyright 2010 - Erlang Solutions Ltd

\D
\D

2

'
[
'h§

Mind-blowing concurrency

» Complex, multi-way signalling

» Multiple failure domains

Billing Presence

> 4
i
-

_al—
A i
| A
Il
Il

B

4-%
——

1\

|

L

]

— Gateway/broker

[

&>

Copyright 2010 - Erlang Solutions Ltd

Natural product evolution

a—
N

78
J O

-
' g

L

(L

» From simple to more complex

» Structuring and encapsulation
should allow us to support this I:I

7’

Copyright 2010 - Erlang Solutions Ltd

Message ordering (1)

» All messages from A to B
must arrive in the same order as they were sent.

@ a3 || a2 || a1 @

a1l
a2
a3

Copyright 2010 - Erlang Solutions Ltd

)

L
y

Message ordering (2)

» Oft forgotten rule:

= The language should not force a specific
global order upon the programmer @ @
» Common (naive) \ Q@
implementation: (B
. . . a3 || a2 || a1
= Event loop dispatches in order of arrival

= Easy to implement ::
= But forces the programmer to deal with a2
all possible orderings of events a3

c2

c3

1
y

%

Copyright 2010 - Erlang Solutions Ltd

Selective Message Reception

» Separate message queues » One queue per process
= Ability to select msgs = + ability to select msgs
out of order out of order

@ <y
() g, T
WA a3 a2 al ’ B
Peme—@ OFm= O

al
ch1|[az]|[[<t a2
a3 c2 || Ch2 a3
c3 c2
c3

)

»

Copyright 2010 - Erlang Solutions Ltd

Session Broker Scenario

Telecom "Half-Call” model
One or more stateful processes

Interaction with multiple Control/Charging, ...
uncoordinated message sources T I “

Message sequences may R .
(and invariably will) interleave | QLT)‘—

| li

|

Resources

A = originating side
B = terminating side

1
y

%

Copyright 2010 - Erlang Solutions Ltd

Programming Experiment

Demo system used in Ericsson’s
Introductory Erlang Course

= assignment: write a control program
for a POTS subscriber loop

We will re-write the control
loop using different semantics.

= Selective message passing
= Event dispatch

Note well: no error handling
(usually the most complex part)

http://github.com/uwiger/pots

Copyright 2010 - Erlang Solutions Ltd

"POTS"”: Plain Ordinary
Telephony System -
Trivial schoolbook
example of telephony
(as simple as it gets)

1123
m 4|56
11213 D%
5 B 125 [rng |
Ok s
* 0| #
pad
' RIN

SWITCH

!
!

-1
-

wlo|w|a|m
#|w|m| e

* £

-1
fal=| ||
| w|m|w

Demo...

1
y

%

Erlang - two approaches

Event-based programming Selective receive FSM

loop(Module, S) -> call(Server, Request) ->
receive Server ! {call, self(), Request},
Msg -> % matches any message receive

S1 = Module:event(Msg, S), {Server, reply, Reply} ->
loop(Module, S1) Reply

end. after 5000 -> % milliseconds

exit(timeout)
end.

We can use Erlang syntax to illustrate both models
(hooray!!)

)
I
..

»

Copyright 2010 - Erlang Solutions Ltd

POTS Control Loop - Original Impl. (1/3)

start() -> i1dle().

inline selective receive
idle() -> *//////,//////*”’/////////
receive Synchronous HW control
{1im, offhook} -» *////////////

1im:start_tone(dial)

getting
{Tim, {digi
idle();
{hc, {reque
Pid ! {
Tim:sta
ringing;
Other ->
io:form
idle()
end.

Copyright 2010 - Erlang Solutions Ltd

start_tone(Tone)->
call({start_tone, Tone}).

call(Request) ->
Ref = make_ref(),
1im ! {request, Request, Ref, self()},
receive
{1im, Ref, {_ReplyTag, Replyl}} ->
Reply
end.

POTS Control Loop - Original Impl. (2/3)

getting_first_digit() ->
receive

{Tim, onhook} ->
Tim:stop_tone(),
idle();

{1im, {digit, Digit}} ->
Tim:stop_tone(),
getting_number(Digit,

number:analyse(Digit, number:valid_sequences()));

{hc, {request_connection, Pid}} ->
Pid ! {hc, {reject, self()}},
getting_first_digit();

_Other -> % unknown message - 1ignore
getting_first_digit(Q

end.

y
I
{
.1

Copyright 2010 - Erlang Solutions Ltd

%

y

POTS Control Loop - Original Impl.

calling_B(P1dB) ->
receive

{1im, onhook} ->
idle();

{1im, {digit, _Digit}} ->
calling_B(P1dB);

{hc, {accept, P1dB}} ->
Tim:start_tone(ring),
ringing_A_side(PidB);

{hc, {reject, P1dB}} ->
Tim:start_tone(busy),
wait_on_hook(true);

{hc, {request_connection, Pid}} ->
Pid ! {hc, {reject, self()}},
calling_B(P1dB);

_Other -> % unknown message - 1ignore
calling_B(P1dB)

end.

Copyright 2010 - Erlang Solutions Ltd

(3/3)

1
y

%

Experiment:
Rewrite the program using
an event-based model

Event-based vsn, blocking HW control (1/3)

%% simple main event loop with FIFO semantics
event_loop(M, S) ->
case (receive Msg -> Msg end) of
{From, Event} ->
dispatch(From, Event, M, S);
{From, Ref, Event} ->
dispatch(From, Event, M, S);
Other ->

10:format(’unknown msg: ~p~n", [Other]),

ex1t({unknown_msg, Other})
end.

dispatch(From, Event, M, S) when atom(Event) ->
{ok, NewState} = M:Event(From, S),
event_loop(M, NewState);

dispatch(From, {Event, Arg}, M, S) ->
{ok, NewState} = M:Event(From, Arg, S),
event_loop(M, NewState).

Copyright 2010 - Erlang Solutions Ltd

1
y

%

Event-based vsn, blocking HW control (2/3)

offhook(lim, #s{state = idle} =S) ->
Tim:start_tone(dial),
{ok, S#s{state = getting_first_digit}};
offhook(1im, #s{state = {ringing_B_side, PidA}} = S) ->
Tim:stop_ringing(Q),

PidA ! {hc, {connect, self()}}, Synchronous HW control

{ok, S#s{state = {speech, PidA}}};
offhook (From, S) ->
i0:format(’unknown message in ~p: ~p~n'",
[S#s.state, {From, offhook}]),
{ok, S}.

1
y

%

Copyright 2010 - Erlang Solutions Ltd

Event-based vsn, blocking HW control (3/3)

onhook(1lim, #s{state = getting_first_digit} =S) ->
Tim:stop_tone(),
{ok, S#s{state = i1dle}};
onhook(lim,#s{state={getting_number,{_Num,_valid}}} = S) ->
{ok, S#s{state = i1dle}};
onhook(1lim, #s{state = {calling_B, _PidB}} = S) ->
{ok, S#s{state = i1dle}};
onhook(1im, #s{state = {ringing_A_side, P1dB}} = S) ->
PidB ! {hc, {cancel, self()}},
Tim:stop_tone(),
{ok, S#s{state = i1dle}};
onhook(11m, #s{state = {speech, OtherPid}} =S) ->
Tim:disconnect_from(OotherprPid),
otherpPid ! {hc, {cancel, self()}},
{ok, S#s{state = i1dle}};

A bit awkward
(FSM programming ”inside-out”),
but manageable.

Copyright 2010 - Erlang Solutions Ltd

[S

Add the non-blocking restriction

(first, naive, implementation)

Non-blocking, event-based (1/3)

Asynchronous HW control

offhook(1im, #s{state = idle} =5S) ->

Tim_asynch:start_tone(dial),

{ok, S#s{state = {{await_tone_start, dial},

getting_first_digit}}};

offhook(1im, #s{state = {ringing_B_side, PidA}} = S) ->

Tim_asynch:stop_ringing(Q),

PidA ! {hc, {connect, self()}},

{ok, S#s{state = {await_ringing_stop, {speech, Pi1dA}}}};
offhook(1lim, s) ->

io:format("Got unknown message in ~p: ~p~n",

[S#s.state, {lim, offhook}]),

{ok, “}.

Copyright 2010 - Erlang Solutions Ltd

1
y

%

Non-blocking, event-based (2/3)

digit(lim, Digit, #s{state = getting_first_digit} = S) ->
%% 11m:stop_tone(),
%% 1dle();
%% CHALLENGE: Since stop _tone() is no longer a synchronous
%% operation, continuing with number analysis is no longer
%% straightforward. We can either continue and somehow log that
%% we are waiting for a message, or we enter the state await_tone_stop
%% and note that we have more processing to do. The former approach
%% would get us into trouble if an invalid digit is pressed, since
%% we then need to start a fault tone. The latter approach seems more
%% clear and consistent. NOTE: we must remember to also write
%% corresponding code in stop_tone_reply().
Tim_asynch:stop_tone(),
{ok, S#s{state = {await_tone_stop,
{continue, fun(sl) ->
f_first_digit(bigit, S1)
end}}}}; s

Copyright 2010 - Erlang Solutions Ltd £ Ve~ _ =7

Non-blocking, event-based (3/3)

start_tone_reply(lim, {Type, yes},

#s{state = {{await_tone_start, Type}, NextState}} = S) ->
{ok, S#s{state = NextState}}.

stop_tone_reply(lim,_,#s{state={await_tone_stop,Next}} =S) ->
%% CHALLENGE: Must remember to check NextState. An alternative would
%% be to always perform this check on return, but this would increase
%% the overhead and increase the risk of entering infinite loops.

case NextState of

{continue, Cont} when function(Cont) ->

cont(S#s{state
>
{ok, S#s{state
end.

Copyright 2010 - Erlang Solutions Ltd

Next});

Next}}

Quite tricky, but the program
still isn’t timing-safe.
(Demo...)

1
y

%

Global State-Event Matrix

FIFO semantics,

asynchronous
hardware API
idle getting |getting calling |ringing [speech ringing B- |wait on- [await tone [await await await await pid [await await dis-
first number B A-side side hook start tone stop |ringing |ringing with telnr |conn-ect |connect
digit start stop
ofthook (0) X X X X X (0) X X X D X X X X
onhook X (0) (0) (0) 0) (0) (0) (0) D D D D D D D
digit — (0] (0] — — — — — D D D D D D —
connect — — — — (0) — — — D X X X X X X
request (0) (0] (0] (0] (0] (0] (0) (0) (0) (0] (0) (0] (0] (0]
connection
reject — — — (0) — — — — X X X X X X X
accept — — — (0) — — — — X X X X X X X
cancel — — — — — — — — X D D D X D X
start tone reply X X X X X X X X (0) X X X X X X
stop tone reply X X X X X X X X X o X X X X X
start ringing X X X X X X X X X X (0) X X X X
reply
stop ringing X X X X X X X X X X X o X X X
reply
pid with telnr X X X X X X X X X X X X (0] X X
reply
connect reply X X X X X X X X X X X X X o X
disconnect reply X X X X X X X X X X X X X X (0)
Pl o dse =d

Copyright 2010 - Erlang Solutions Ltd

Apparent Problems

» The whole matrix needs to be revisited if messages/features
are added or removed.

» What to do in each cell is by no means obvious - depends on
history.

» What to do when an unexpected message arrives in a transition

state is practically never specified (we must invent some
reasonable response.)

» Abstraction is broken, encapsulation is broken

» Code reuse becomes practically impossible

»

Copyright 2010 - Erlang Solutions Ltd

Non-blocking, using message filter (1/2)

digit(lim, Digit, #s{state = getting_first_digit} = S) ->

%% CHALLENGE: ...<same as before>

Ref = Tim_asynch:stop_tone(),

{ok, S#s{state = {await_tone_stop,

{continue, fun(sl) ->
f_first_digit(bigit, S1)
end}}},
#recv{lim = Ref, _ = false}};

— _/
—~

The continuations are still

necessary, but our sub-states
are now insensitive to timing
variations.

Accept only msgs tagged with Ref,
coming from ’lim’;

buffer everything else.

y
I
{
.1

Copyright 2010 - Erlang Solutions Ltd

%

y

Non-blocking, using message filter (2/2)

event_loop(M, S, Recv) ->

receive

{From, Event} when
dispatch(From,
{From, Ref, Event}
dispatch(From,
{From, Ref, Event}
dispatch(From,

end.

dispatch(From, Event, M, S) when atom(Event) ->

element(From, Recv) == [] ->

Event, M, S);

when element(From, Recv)

Event, M, S);

when element(From, Recv)

Event, M, S)

handle(M:Event(From, S), M);
dispatch(From, {Event, Arg}, M, S) ->
handle(M:Event(From, Arg, S), M).

handle({ok, NewState}

Copyright 2010 - Erlang Solutions Ltd

== Ref ->

= [] —>

, M) -> event_loop(M, NewState);
handle({ok, NewState, Recv}, M) -> event_loop(M, NewState, Recv).

Properties of filtered event loop

» Can be implemented in basically any language
(e.g. extending existing C++ framework.)

» Solves the complexity explosion problem.

» Doesn’t eliminate the need for continuations
(this affects readability - not complexity)

Copyright 2010 - Erlang Solutions Ltd

2

'
[
'h§

A (much) larger example

AXE
55 | IEEII'-INH‘ E!I.‘.EM‘ E-EF.I!IH‘
sU5 ——
Traffhic contral
BICC
EE
H.243 ancoding MG
and digribulicn
AX0 301

s —

/ Short messages, chatty protocol

Legacy Phone Switch

Switch Emulator and
Voice-over-ATM Controller

(“Mediation logic”)

Copyright 2010 - Erlang Solutions Ltd

4 I \
Fewer, larger text messages

>
=~
!'l§

A (much) larger Example

Code extract from the AXD301-based ”Mediation Logic” (ML, before rewrite)

%% We are waiting to send a StopTone while processing a StartTone and now
%% we get a ReleasePath. Reset tone type to off and override StopTone
%% with ReleasePath since this will both clear the tone and remove connection.
cm_msg([?CM_RELEASE_PATH,TransId, [SessionId|Data]] = NewMsg,
HcId, #mlgCmConnTable{
sessionId = SessionId,
sendMsg = ?CM_START_TONE_RES,
newMsg = {cm_msg,
[?7CM_STOP_TONE [Msg]}} = HcRec,
TraceLog) ->
NewHcRec = HcRec#mlgCmConnTable{
newMsg = {cm_msg, NewMsg},
toneType = off},
NewLog = ?NewLog({cm_rp, 10}, {pend, pend}, undefined),
mlgCmHccLib:end_session(
pending, NewHcRec, [NewLog | TraceLog], override);

1
y

%

Copyright 2010 - Erlang Solutions Ltd

A (much) larger Example

Code extract from the AXD301-based ”Mediation Logic” (ML, before rewrite)

%% |If we are pending a Notify Released event for a Switch Device, override
%% with ReleasePath.
cm_msg([?CM_RELEASE_PATH,TransId, [SessionId|Data]] = NewMsg,
HcId,
#mlgCmConnTable{
sessionId = SessionId,
newMsg = {gcp_msg, [notify, GcpDatal]l},
deviceType = switchDevice,
path2Info = undefined} = HcRec,
TraceLog) ->
NewHcRec = HcRec#mlgCmConnTable{newMsg= {cm_msg, NewMsg}},
NewLog = ?NewLog({cm_rp, 20}, {pend, pend}, undefined),
mlgCmHccLib:end_session(
pending, NewHcRec, [NewLog | TraceLog], override);

1
y

>

Copyright 2010 - Erlang Solutions Ltd

A

(much) larger Example

Code extract from the AXD301-based ”Mediation Logic” (ML, before rewrite)

%66
2676
%676
2676
2676

Getting a ReleasePath when pending a Notify Released event is a bit
complicated. We need to check for which path the ReleasePath is for and
for which path the notify is for. If they are for different paths we are

in a dilemma since we only can be in pending for one of them. As a simple
way out we just treat this as an abnormal release for now.

cm_msg([?CM_RELEASE_PATH,TransId, [SessionId|Data]] = NewMsg,

HcId,
#mlgCmConnTable{
sessionId = SessionId,
newMsg = {gcp_msg, [notify, GcpDatal]l},
deviceType = switchDevice} = HcRec,
TraceLog) ->
mlgCmHcc:send_cm_msg(?CM_RELEASE_PATH_RES,
?MSG_SUCCESSFUL, TransId, SessionId),
NewHcRec = HcRec#mlgCmConnTable{newMsg = abnormal_rel},
NewLog = ?NewLog({cm_rp, 30}, {pend, pend}, undefined),
mlgCmHccLib:end_session(pending, NewHcRec, o fond

Copyright 2010 - Erlang Solutions Ltd [NeWLog | Tr.aceLog] ’ Over.r..ide) ; o

Observations

» Practically impossible to understand the code without the
comments

» Lots of checking for each message to determine exact
context (basically, a user-level call stack.)

» A nightmare to test and reason about

» This code has now been re-written and greatly simplified.

&>

Copyright 2010 - Erlang Solutions Ltd

ML State-Event Matrix (1/4)

State

Connected
MaodifvConn
Tomwe Ac five
CotActive
Pending

Override
Prepare

Futsblishbath k i 22] |5e Action procedures:

N/A Not applicable

ModifyPath o B ol B ' : : X No action, ignore the error

y Return protocol error,
remain in same state

A Anomaly, log

ReleasePath

StantTone

StopTone

PreparePath

BreakPath Alternative execution paths

ReleaseDevice

ML State-Event

Matrix (2/4

Copyright 2010 - Erlang Solutions

State _ = o
= s £ -
tls |2 | |E |2 |2 - g |z
Triggers = = = § S = = P - E E 2 = 2
= = = =] = L = = = = n = E z
z o -] e = = = o =] o = - &
AddReply A A 29, | A A A A A A A A 221 A A
30,
3l,
3z,
i3,
256
SubtractReply A A A A o, A A A A 139 A A A
ModifyReply A A A A A 105,] 114, | A A A A A A
106 | 115,
116,
117,
I 18,
e
MoveReply A A A A A A A A A 140, 1 180 | A A
141
Matily - establish ® 4 34, 549 A A A A A 1EB1 215 A 260
35, | 60 a3
36
Notily - release X 15 15 6l, 15 15 A A 142] 182, [216 | 15 15 242,
62, 183 243
63, 184,
64, 185
a5, 186G
Lalad

ML State-Event Matrix (3/4

: N =
State _ = .
- = - =
z . = =
= = = = B = -] &
Triggeirs = = - g Eit = & = z = = B
= 5 = =] = L] g = = 5] =
i o - - -5 = = L] = - o -
he msg - setup B A A a7, | 96 A A 127 132 187 17 A

he msg - setup res A 16, A A A A A A A A

he msg = maodify A A A T2 A A A A A A 196 A A A

he msg - A A A A A 107, | 120 A A A A A A A
modify _res 108

he msg - release

7s,
76,
he msg - release res || x A A A 9o MNA NA MNA MNA 144 A A A A

A 257 | 101 A A A A A 204, | A A A
205,

he msg - prepare 11 A

2

207,

.
208

prepare_res

he msg - break A A A TR A A A A A A A A A A

Copyright 2010 - Erlang Solutions

he msg

ML State-Event Matrix (4/4

State

Trigeers

he tmeout

Connected

ToneActive
Override
Pending

Prepare

sCp el

abnormal el

Copyright 2010 - Erlang Solutions Ltd

Observations...

Summary

» There is no global ordering

» Tying yourself to the actual ordering of events,
leads to accidental complexity

» Complexity grows relative to the number of possible
permutations of event sequences

» ...unless you have a strategy for “reordering events”

» Hard-real-time programmers basically have no choice
= Do you?

Copyright 2010 - Erlang Solutions Ltd

»

http://github.com/uwiger/pots

Copyright 2010 - Erlang Solutions Ltd

