
Death by Accidental Complexity

Erlang Solutions Ltd

QCon
London, March 12, 2010

Ulf Wiger, CTO Erlang Solutions Ltd.

Ulf Wiger
ulf.wiger@erlang-solutions.com

Brain-dead concurrency

� A.k.a. Embarrassingly Parallel

� E.g. Plain web server
� Minimal dependencies, request/reply pattern

Copyright 2010 – Erlang Solutions Ltd

Mind-blowing concurrency

� Complex, multi-way signalling

� Multiple failure domains

Billing
Presence

Copyright 2010 – Erlang Solutions Ltd

Gateway/broker

Registry

Natural product evolution

Copyright 2010 – Erlang Solutions Ltd

� From simple to more complex

� Structuring and encapsulation

should allow us to support this

Message ordering (1)

� All messages from A to B

must arrive in the same order as they were sent.

Copyright 2010 – Erlang Solutions Ltd

A B

a1

a2

a3

a1a2a3

Message ordering (2)

� Oft forgotten rule:
� The language should not force a specific

global order upon the programmer

� Common (naïve)

implementation: A B

C

Copyright 2010 – Erlang Solutions Ltd

implementation:
� Event loop dispatches in order of arrival

� Easy to implement

� But forces the programmer to deal with

all possible orderings of events

A B

a1

a2

a3

a1a2a3

c1

c2

c3

Selective Message Reception

� Separate message queues
� Ability to select msgs

out of order

C

C

� One queue per process
� + ability to select msgs

out of order

Copyright 2010 – Erlang Solutions Ltd

A B

a1

a2

a3

a1a2a3

C

c1

c2

c3

Ch 1

Ch 2

A B

a1

a2

a3

a1a2a3

c1

c2

c3

Session Broker Scenario

One or more stateful processes

Interaction with multiple

uncoordinated message sources

Message sequences may
A B

Control/Charging, ...

Telecom ”Half-Call” model

Copyright 2010 – Erlang Solutions Ltd

Message sequences may

(and invariably will) interleave
A B

Resources

A = originating side

B = terminating side

Programming Experiment

Demo system used in Ericsson’s
Introductory Erlang Course
� assignment: write a control program
for a POTS subscriber loop

We will re-write the control
loop using different semantics.

”POTS”: Plain Ordinary
Telephony System –
Trivial schoolbook
example of telephony
(as simple as it gets)

Copyright 2010 – Erlang Solutions Ltd

loop using different semantics.
� Selective message passing

� Event dispatch

Note well: no error handling
(usually the most complex part)

http://github.com/uwiger/pots

Demo...

Erlang – two approaches

Event-based programming Selective receive FSM

loop(Module, S) ->

receive

Msg -> % matches any message

S1 = Module:event(Msg, S),

loop(Module, S1)

call(Server, Request) ->

Server ! {call, self(), Request},

receive

{Server, reply, Reply} ->

Reply

Copyright 2010 – Erlang Solutions Ltd

loop(Module, S1)

end.

Reply

after 5000 -> % milliseconds

exit(timeout)

end.

We can use Erlang syntax to illustrate both models

(hooray!!)

start() -> idle().

idle() ->
receive

{lim, offhook} ->
lim:start_tone(dial),
getting_first_digit();

{lim, {digit, _Digit}} ->

POTS Control Loop – Original Impl. (1/3)

inline selective receive

Synchronous HW control

lim:start_tone(dial),

Copyright 2010 – Erlang Solutions Ltd

{lim, {digit, _Digit}} ->
idle();

{hc, {request_connection, Pid}} ->
Pid ! {hc, {accept, self()}},
lim:start_ringing(),
ringing_B_side(Pid);

Other ->
io:format("Got unknown message: ~p~n", [Other]),
idle()

end.

start_tone(Tone)->
call({start_tone, Tone}).

call(Request) ->
Ref = make_ref(),
lim ! {request, Request, Ref, self()},
receive

{lim, Ref, {_ReplyTag, Reply}} ->
Reply

end.

POTS Control Loop – Original Impl. (2/3)

getting_first_digit() ->
receive

{lim, onhook} ->
lim:stop_tone(),
idle();

{lim, {digit, Digit}} ->
lim:stop_tone(),
getting_number(Digit,

Copyright 2010 – Erlang Solutions Ltd

getting_number(Digit,
number:analyse(Digit, number:valid_sequences()));

{hc, {request_connection, Pid}} ->
Pid ! {hc, {reject, self()}},
getting_first_digit();

_Other -> % unknown message – ignore
getting_first_digit()

end.

POTS Control Loop – Original Impl. (3/3)

calling_B(PidB) ->
receive

{lim, onhook} ->
idle();

{lim, {digit, _Digit}} ->
calling_B(PidB);

{hc, {accept, PidB}} ->
lim:start_tone(ring),

Copyright 2010 – Erlang Solutions Ltd

lim:start_tone(ring),
ringing_A_side(PidB);

{hc, {reject, PidB}} ->
lim:start_tone(busy),
wait_on_hook(true);

{hc, {request_connection, Pid}} ->
Pid ! {hc, {reject, self()}},
calling_B(PidB);

_Other -> % unknown message – ignore
calling_B(PidB)

end.

Experiment:

Rewrite the program using

an event-based model

Event-based vsn, blocking HW control (1/3)

%% simple main event loop with FIFO semantics
event_loop(M, S) ->

case (receive Msg -> Msg end) of
{From, Event} ->

dispatch(From, Event, M, S);
{From, Ref, Event} ->

dispatch(From, Event, M, S);
Other ->

Copyright 2010 – Erlang Solutions Ltd

Other ->
io:format(”Unknown msg: ~p~n", [Other]),
exit({unknown_msg, Other})

end.

dispatch(From, Event, M, S) when atom(Event) ->
{ok, NewState} = M:Event(From, S),
event_loop(M, NewState);

dispatch(From, {Event, Arg}, M, S) ->
{ok, NewState} = M:Event(From, Arg, S),
event_loop(M, NewState).

Event-based vsn, blocking HW control (2/3)

offhook(lim, #s{state = idle} = S) ->
lim:start_tone(dial),
{ok, S#s{state = getting_first_digit}};

offhook(lim, #s{state = {ringing_B_side, PidA}} = S) ->
lim:stop_ringing(),

Copyright 2010 – Erlang Solutions Ltd

lim:stop_ringing(),
PidA ! {hc, {connect, self()}},
{ok, S#s{state = {speech, PidA}}};

offhook(From, S) ->
io:format(”Unknown message in ~p: ~p~n",

[S#s.state, {From, offhook}]),
{ok, S}.

Synchronous HW control

Event-based vsn, blocking HW control (3/3)

onhook(lim, #s{state = getting_first_digit} = S) ->
lim:stop_tone(),
{ok, S#s{state = idle}};

onhook(lim,#s{state={getting_number,{_Num,_Valid}}} = S) ->
{ok, S#s{state = idle}};

onhook(lim, #s{state = {calling_B, _PidB}} = S) ->
{ok, S#s{state = idle}};

Copyright 2010 – Erlang Solutions Ltd

onhook(lim, #s{state = {ringing_A_side, PidB}} = S) ->
PidB ! {hc, {cancel, self()}},
lim:stop_tone(),
{ok, S#s{state = idle}};

onhook(lim, #s{state = {speech, OtherPid}} = S) ->
lim:disconnect_from(OtherPid),
OtherPid ! {hc, {cancel, self()}},
{ok, S#s{state = idle}};

... A bit awkward

(FSM programming ”inside-out”),

but manageable.

Add the non-blocking restriction

(first, naive, implementation)

Non-blocking, event-based (1/3)

offhook(lim, #s{state = idle} = S) ->
lim_asynch:start_tone(dial),
{ok, S#s{state = {{await_tone_start, dial},

getting_first_digit}}};
offhook(lim, #s{state = {ringing_B_side, PidA}} = S) ->

Asynchronous HW control

Copyright 2010 – Erlang Solutions Ltd

lim_asynch:stop_ringing(),
PidA ! {hc, {connect, self()}},
{ok, S#s{state = {await_ringing_stop, {speech, PidA}}}};

offhook(lim, S) ->
io:format("Got unknown message in ~p: ~p~n",

[S#s.state, {lim, offhook}]),
{ok, S}.

Non-blocking, event-based (2/3)

digit(lim, Digit, #s{state = getting_first_digit} = S) ->
%% lim:stop_tone(),
%% idle();
%% CHALLENGE: Since stop_tone() is no longer a synchronous
%% operation, continuing with number analysis is no longer
%% straightforward. We can either continue and somehow log that

%% we are waiting for a message, or we enter the state await_tone_stop

Copyright 2010 – Erlang Solutions Ltd

%% we are waiting for a message, or we enter the state await_tone_stop
%% and note that we have more processing to do. The former approach
%% would get us into trouble if an invalid digit is pressed, since
%% we then need to start a fault tone. The latter approach seems more
%% clear and consistent. NOTE: we must remember to also write
%% corresponding code in stop_tone_reply().
lim_asynch:stop_tone(),
{ok, S#s{state = {await_tone_stop,

{continue, fun(S1) ->
f_first_digit(Digit, S1)

end}}}};

Non-blocking, event-based (3/3)

start_tone_reply(lim, {Type, yes},
#s{state = {{await_tone_start, Type}, NextState}} = S) ->
{ok, S#s{state = NextState}}.

stop_tone_reply(lim,_,#s{state={await_tone_stop,Next}} =S) ->
%% CHALLENGE: Must remember to check NextState. An alternative would

Copyright 2010 – Erlang Solutions Ltd

%% CHALLENGE: Must remember to check NextState. An alternative would
%% be to always perform this check on return, but this would increase
%% the overhead and increase the risk of entering infinite loops.
case NextState of

{continue, Cont} when function(Cont) ->
Cont(S#s{state = Next});

_ ->
{ok, S#s{state = Next}}

end.

Quite tricky, but the program

still isn’t timing-safe.

(Demo...)

idle getting

first

digit

getting

number

calling

B

ringing

A-side

speech ringing B-

side

wait on-

hook

await tone

start

await

tone stop

await

ringing

start

await

ringing

stop

await pid

with telnr

await

conn-ect

await dis-

connect

offhook O X X X X X O X X X D X X X X

onhook X O O O O O O O D D D D D D D

digit — O O — — — — — D D D D D D —

connect — — — — O — — — D X X X X X X

request

connection

O O O O O O O O O O O O O O O

reject — — — O — — — — X X X X X X X

accept — — — O — — — — X X X X X X X

FIFO semantics,

asynchronous

hardware API

Global State-Event Matrix

Copyright 2010 – Erlang Solutions Ltd

cancel — — — — — — — — X D D D X D X

start tone reply X X X X X X X X O X X X X X X

stop tone reply X X X X X X X X X O X X X X X

start ringing

reply

X X X X X X X X X X O X X X X

stop ringing

reply

X X X X X X X X X X X O X X X

pid with telnr

reply

X X X X X X X X X X X X O X X

connect reply X X X X X X X X X X X X X O X

disconnect reply X X X X X X X X X X X X X X O

Apparent Problems

� The whole matrix needs to be revisited if messages/features

are added or removed.

� What to do in each cell is by no means obvious – depends on

history.

Copyright 2010 – Erlang Solutions Ltd

� What to do when an unexpected message arrives in a transition

state is practically never specified (we must invent some

reasonable response.)

� Abstraction is broken, encapsulation is broken

� Code reuse becomes practically impossible

Non-blocking, using message filter (1/2)

digit(lim, Digit, #s{state = getting_first_digit} = S) ->
%% CHALLENGE: ...<same as before>
Ref = lim_asynch:stop_tone(),
{ok, S#s{state = {await_tone_stop,

{continue, fun(S1) ->
f_first_digit(Digit, S1)

Copyright 2010 – Erlang Solutions Ltd

end}}},
#recv{lim = Ref, _ = false}};

The continuations are still

necessary, but our sub-states

are now insensitive to timing

variations.

Accept only msgs tagged with Ref,

coming from ’lim’;

buffer everything else.

Non-blocking, using message filter (2/2)

event_loop(M, S, Recv) ->
receive

{From, Event} when element(From, Recv) == [] ->
dispatch(From, Event, M, S);

{From, Ref, Event} when element(From, Recv) == Ref ->
dispatch(From, Event, M, S);

{From, Ref, Event} when element(From, Recv) == [] ->
dispatch(From, Event, M, S)

Copyright 2010 – Erlang Solutions Ltd

dispatch(From, Event, M, S)
end.

dispatch(From, Event, M, S) when atom(Event) ->
handle(M:Event(From, S), M);

dispatch(From, {Event, Arg}, M, S) ->
handle(M:Event(From, Arg, S), M).

handle({ok, NewState} , M) -> event_loop(M, NewState);
handle({ok, NewState, Recv}, M) -> event_loop(M, NewState, Recv).

Properties of filtered event loop

� Can be implemented in basically any language

(e.g. extending existing C++ framework.)

� Solves the complexity explosion problem.

� Doesn’t eliminate the need for continuations

Copyright 2010 – Erlang Solutions Ltd

� Doesn’t eliminate the need for continuations

(this affects readability – not complexity)

A (much) larger example

Legacy Phone Switch

Short messages, chatty protocol

Copyright 2010 – Erlang Solutions Ltd

Switch Emulator and

Voice-over-ATM Controller

(“Mediation logic”)

Erlang

Fewer, larger text messages

A (much) larger Example

%% We are waiting to send a StopTone while processing a StartTone and now

%% we get a ReleasePath. Reset tone type to off and override StopTone
%% with ReleasePath since this will both clear the tone and remove connection.
cm_msg([?CM_RELEASE_PATH,TransId,[SessionId|Data]] = NewMsg,

HcId, #mlgCmConnTable{
sessionId = SessionId,
sendMsg = ?CM_START_TONE_RES,

Code extract from the AXD301-based ”Mediation Logic” (ML, before rewrite)

Copyright 2010 – Erlang Solutions Ltd

sendMsg = ?CM_START_TONE_RES,
newMsg = {cm_msg,

[?CM_STOP_TONE|Msg]}} = HcRec,
TraceLog) ->

NewHcRec = HcRec#mlgCmConnTable{
newMsg = {cm_msg, NewMsg},

toneType = off},
NewLog = ?NewLog({cm_rp, 10}, {pend, pend}, undefined),
mlgCmHccLib:end_session(

pending, NewHcRec, [NewLog | TraceLog], override);

A (much) larger Example

%% If we are pending a Notify Released event for a Switch Device, override
%% with ReleasePath.
cm_msg([?CM_RELEASE_PATH,TransId,[SessionId|Data]] = NewMsg,

HcId,
#mlgCmConnTable{

sessionId = SessionId,
newMsg = {gcp_msg, [notify, GcpData]},

Code extract from the AXD301-based ”Mediation Logic” (ML, before rewrite)

Copyright 2010 – Erlang Solutions Ltd

newMsg = {gcp_msg, [notify, GcpData]},
deviceType = switchDevice,
path2Info = undefined} = HcRec,

TraceLog) ->
NewHcRec = HcRec#mlgCmConnTable{newMsg= {cm_msg, NewMsg}},
NewLog = ?NewLog({cm_rp, 20}, {pend, pend}, undefined),
mlgCmHccLib:end_session(

pending, NewHcRec, [NewLog | TraceLog], override);

A (much) larger Example

%% Getting a ReleasePath when pending a Notify Released event is a bit
%% complicated. We need to check for which path the ReleasePath is for and

%% for which path the notify is for. If they are for different paths we are
%% in a dilemma since we only can be in pending for one of them. As a simple
%% way out we just treat this as an abnormal release for now.
cm_msg([?CM_RELEASE_PATH,TransId,[SessionId|Data]] = NewMsg,

HcId,

Code extract from the AXD301-based ”Mediation Logic” (ML, before rewrite)

Copyright 2010 – Erlang Solutions Ltd

HcId,
#mlgCmConnTable{

sessionId = SessionId,
newMsg = {gcp_msg, [notify, GcpData]},
deviceType = switchDevice} = HcRec,

TraceLog) ->
mlgCmHcc:send_cm_msg(?CM_RELEASE_PATH_RES,

?MSG_SUCCESSFUL, TransId, SessionId),
NewHcRec = HcRec#mlgCmConnTable{newMsg = abnormal_rel},
NewLog = ?NewLog({cm_rp, 30}, {pend, pend}, undefined),
mlgCmHccLib:end_session(pending, NewHcRec,

[NewLog | TraceLog], override);

Observations

� Practically impossible to understand the code without the

comments

� Lots of checking for each message to determine exact

context (basically, a user-level call stack.)

� A nightmare to test and reason about

Copyright 2010 – Erlang Solutions Ltd

� A nightmare to test and reason about

� This code has now been re-written and greatly simplified.

Action procedures:

N/A Not applicable

x No action, ignore the error

ML State-Event Matrix (1/4)

Copyright 2010 – Erlang Solutions Ltd

Alternative execution paths

depending on context

x No action, ignore the error

y Return protocol error,

remain in same state

A Anomaly, log

ML State-Event Matrix (2/4)

Copyright 2010 – Erlang Solutions Ltd

ML State-Event Matrix (3/4)

Copyright 2010 – Erlang Solutions Ltd

ML State-Event Matrix (4/4)

Copyright 2010 – Erlang Solutions Ltd

Observations...

Summary

� There is no global ordering

� Tying yourself to the actual ordering of events,

leads to accidental complexity

� Complexity grows relative to the number of possible

Copyright 2010 – Erlang Solutions Ltd

� Complexity grows relative to the number of possible

permutations of event sequences

� ...unless you have a strategy for “reordering events”

� Hard-real-time programmers basically have no choice
� Do you?

http://github.com/uwiger/pots

Copyright 2010 – Erlang Solutions Ltd

http://github.com/uwiger/pots

