
The Kiev Experiment

Evolving Agile Partnerships

Who are we?

•  Simon Ogle

•  Alexander Kikhtenko

•  Peter Thomas

Where did we start?

•  Existing monolithic mainframe application

•  Quarterly deliveries

•  6 week testing cycles

•  Offshore delivery teams

•  Waterfall process

•  Command and control

What did we want to do?

•  Belief there was a better way to deliver software

•  Incremental development to deliver business value quickly

•  Address the rapidly changing business landscape with flexibility in delivery

•  Build quality into the solutions

•  Deliver the software rapidly, but in a cost effective manner

•  Put the fun back into software delivery

•  But the rest of the organisation very sceptical about our delivery approach

How did we start?

•  Started with a single team in London

•  Initially focused on building the tools, proving the processes and technologies

•  Release 1.0 on Friday 13th October 2006

•  Very soon we started to look how we could scale

Where are we now?

•  5 years into the delivery

•  2M trades per day

•  100 billions settling per day in all major currencies

•  40 exchanges across EMEA and APAC

•  15 scrum teams/120 people

•  Teams in London, Kiev, Hyderabad, Hong Kong and New York

•  9 application components

•  Production releases every 2 weeks

Evolving the team

Evolving the relationship

D D

D D

D

D

D

2006

small co-located
team

D

D

D

D D

D

D D

D D

D

D

D

2006

small co-located
team

2007

D D

D D

D

D

D

D

D

D

D D

D

component
teams

2006 2007

small co-located
team

D

D

D

D

D

D D

D

D D

D

D

D

A T

A T

A T

D

D

D

co-located
feature teams

dispersed
feature teams

component
teams

2006 2007

small co-located
team

2008 2009

D D D

D

D

D

D D

D

D

D D

D

D

D

D

A T

A T

A T

D D

A T

first distributed
feature team

co-located
feature teams

dispersed
feature teams

component
teams

2006 2007

small co-located
team

2008 2009 2010

D D D

D

D

D

D D

D

D

D D

D D D D

A T

A T

A T

D D

A T

D D D D D

A T

D D D D

A T

many distributed
feature teams

first distributed
feature team

co-located
feature teams

dispersed
feature teams

component
teams

2006 2007

small co-located
team

2008 2009 2010 2011

New York London Kiev Hyderabad Hong Kong

Evolving the communication

Communication issue

End users

Analysts

Architects

Offshore
team 1

Offshore
team 2

Offshore
team 3

Broadening communication
bandwidth

Polycom experiment

Communication
flow

PHOTO

Skype and projector

Interactive whiteboards + Skype

TelePresence?

Bridging the communication
gap

Team intermediary

Onshore team Intermediary Offshore team

Bilateral rotation

Specification by example

SBE over Smartboard

Dedicated architects group

Architects

Offshore
team 1

Offshore
team 2

Offshore
team 3

Joint architecture workshops

Joint architecture workshops

Jan 2009

Small pieces of
technical tasks

May 2009

Complex
technical tasks

Dec 2009

User stories
refined by SME

May 2010

User stories
refined in
collaboration
with end users

Luxoft teams evolution

4 people
0 teams

6 people
1 team

21 people
3 teams

30 people
4 teams

Tackling technical challenges

Release management

trunk

Release 1.0 Release 2.0

But how do you scale?

trunk

Release 1.0 Release 2.0

Multiple
teams

Concurrent
projects

ISE

CHIX

TQ

Release 2.0

Release 2.1

Let’s introduce a process

But what if this
now becomes the
highest priority?

CI needed on each
branch

Manual and high
coordinated

Waste of delayed
integration

How do you address
changing feature
priority?

How do you allow
incremental feature
development?

How can you have an
agile release function?

trunk

Release X
(ISE)

Release Y
(CHIX)

This is what we want

ISE

CHIX

TQ

trunk

Release X
(ISE)

Release Y
(CHIX)

Latent Code Patterns

ISE

CHIX

TQ
“One of the most powerful techniques I
have used over the last three years is
latent code patterns.”

Chris Matts InfoQ – The Last Responsible Moment in Deployment

trunk

Release X
(ISE)

Release Y
(CHIX)

Latent Code Patterns

ISE

CHIX

TQ
Event Driven
Feature Bits or Configuration
Modularity or Dependency Injection

200 commits per day
1000 artefacts updated per day
1 commit every 5 minutes peak

Keeping it green

A single bad commit …

13 hours elapsed time wasted
500 hours of effort wasted

A wasted day

Coaching

Fast visible feedback

•  24 Build Targets •  37 Test Targets

So how did we get here?

•  Protect the team and empower them

•  Go and see

•  Embrace “muddling through”

•  Don’t accept the status quo – have courage

•  Follow through with change – be tenacious

•  Respect and trust people

•  Invest in the engineering

•  Stop worrying about big – make it small

