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The internet era has 
moved us away from 
traditional database 
architecture, now a 
quarter of a century 
old. 

Industry and academia 
have responded with a 
variety of solutions that 
leverage distribution, use 
of a simpler contract and 
RAM storage. 

We introduce ODC a 
NoSQL store with a 
unique mechanism 
for efficiently 
managing normalised 
data. 

We show how we 
adapt the concept of 
a  Snowflake Schema 
to aid the application 
of replication and 
partitioning and avoid 
problems with 
distributed joins. 

The result is a highly 
scalable, in-memory 
data store that can 
support both millisecond 
queries and high 
bandwidth exports over 
a normalised object 
model. 

Finally we introduce the 
‘Connected Replication’ 
pattern as mechanism 
for making the star 
schema practical for in 
memory architectures. 

The Story…




Database Architecture is Old


Most modern databases still follow a 
1970s architecture (for example IBM’s 
System R)




 “Because RDBMSs can be beaten by more than 
an order of magnitude on the standard OLTP 
benchmark, then there is no market where they 
are competitive. As such, they should be 
considered as legacy technology more than a 
quarter of a century in age, for which a complete 
redesign and re-architecting is the appropriate 
next step.”








Michael Stonebraker (Creator of Ingres and Postgres)


 




What steps have we taken 
to improve the 

performance of this 
original architecture?




Improving Database Performance (1)"
Shared Disk Architecture


Shared

Disk




Improving Database Performance (2)"
Shared Nothing Architecture


Shared Nothing




Improving Database Performance (3)"

In Memory Databases




Improving Database Performance (4)"
Distributed In Memory (Shared Nothing)




Improving Database Performance (5) "
Distributed Caching


Distributed Cache




These approaches are converging


Regular 
Database


Distributed 
Caching


Shared 

Nothing


Oracle, Sybase, 
MySql


Teradata, Vertica,

NoSQL…


Coherence, 
Gemfire, 

Gigaspaces 



ODC


Shared 

Nothing


(memory)

VoltDB, Hstore




So how can we make a data store go 
even faster?


Distributed Architecture


Drop ACID: Simplify 
the Contract.


Drop disk




(1) Distribution for Scalability: The 
Shared Nothing Architecture


• Originated in 1990 (Gamma 
DB) but popularised by 
Teradata / BigTable /
NoSQL


• Massive storage potential


• Massive scalability of 
processing


• Commodity hardware


• Limited by cross partition 
joins


Autonomous processing unit

for a data subset




(2) Simplifying the Contract


• For many users ACID is overkill.


•  Implementing ACID in a distributed architecture has a 
significant affect on performance.


• NoSQL Movement: CouchDB, MongoDB,10gen, 
Basho, CouchOne, Cloudant, Cloudera, GoGrid, 
InfiniteGraph, Membase, Riptano, Scality….




Databases have huge operational 
overheads


Taken from “OLTP Through 
the Looking Glass, and What 
We Found There” 
Harizopoulos et al 




(3) Memory is 100x faster than disk


0.000,000,000,000


μs
 ns
 ps
ms


L1 Cache Ref


L2 Cache Ref


Main Memory

Ref


1MB Main Memory


Cross Network 
Round Trip


Cross Continental 
Round Trip


1MB Disk/Network


* L1 ref is about 2 clock cycles or 0.7ns. This is 
the time it takes light to travel 20cm




Avoid all that overhead


RAM means:


• No IO


• Single Threaded


⇒ No locking / latching


• Rapid aggregation etc


• Query plans become less 
important




We were keen to leverage these three 
factors in building the ODC


Distribution
 Simplify the 
contract


Memory 
Only




What is the ODC?




Highly distributed, in memory, normalised data 
store designed for scalable data access and 

processing.







The Concept


Originating from Scott Marcar’s concept of a central 
brain within the bank: 


“The copying of data lies at the 
route of many of the bank’s 
problems. By supplying a single 
real-time view that all systems can 
interface with we remove the need 
for reconciliation and promote the 
concept of truly shared services” - 
Scott Marcar (Head of Risk and 
Finance Technology)




This is quite tricky problem


High Bandwidth 
Access to Lots 

of Data


Low Latency 
Access to 

small 
amounts of 

data


Scalability to 
lots of users




ODC Data Grid: Highly Distributed 
Physical Architecture


In-memory 
storage


Messaging (Topic Based) as a system of record

(persistence)


Lots of parallel 
processing
 Oracle 


Coherence




The Layers"
"
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But unlike most caches the ODC is 
Normalised




Three Tools of Distributed Data 
Architecture


Indexing


Replication
Partitioning




For speed, replication is best


Wherever you go the 
data will be there


But your storage is limited by 
the memory on a node




For scalability, partitioning is best


Keys Aa-Ap


Scalable storage, bandwidth 
and processing


Keys Fs-Fz
 Keys Xa-Yd




Traditional Distributed Caching 
Approach


Trade


Party

Trader


Keys Aa-Ap


Big Denormliased 
Objects are spread 
across a distributed 
cache


Keys Fs-Fz
 Keys Xa-Yd




But we believe a data 
store needs to be more 
than this: it needs to be 

normalised!




So why is that?


Surely denormalisation 
is going to be faster?




Denormalisation means replicating 
parts of your object model




…and that means managing 
consistency over lots of copies




… as parts of the object graph will be 
copied multiple times


Trade


Party

Trader


Periphery objects that are 
denormalised onto core objects 
will be duplicated multiple times 
across the data grid. 

Party A




…and all the duplication means you 
run out of space really quickly




Spaces issues are exaggerated 
further when data is versioned 


Trade


Party

Trader
 Version 1


Trade


Party

Trader
 Version 2


Trade


Party

Trader
 Version 3


Trade


Party

Trader
 Version 4


…and you need 
versioning to do MVCC




And reconstituting a previous time 
slice becomes very difficult.


Trade
 Party
 Trader


Trade


Trade


Party


Party


Party


Trader


Trader




Why Normalisation?


Easy to change data (no 
distributed locks / transactions)


Better use of memory.


Facilitates Versioning


And MVCC/Bi-temporal




OK, OK, lets normalise 
our data then. What 

does that mean?




We decompose our 
domain model and 
hold each object 

separately




This means the object graph will be 
split across multiple machines.


Trade


Party

Trader


Trade
 Party
Trader




Binding them back together involves a 
“distributed join” => Lots of network hops


Trade


Party

Trader


Trade
 Party
Trader




It’s going to be slow… 




Whereas the denormalised model the 
join is already done




Hence Denormalisation is FAST!"
(for reads) 





So what we want is the advantages of a 
normalised store at the speed of a 
denormalised one! "
"

 "

This is what the ODC is all about!




Looking more closely: Why does 
normalisation mean we have to be 

spread data around the cluster. Why 
can’t we hold it all together?




It’s all about the keys




We can collocate data with common keys but if they 
crosscut the only way to collocate is to replicate


Common 
Keys


Crosscutting

Keys




We tackle this problem with a hybrid 
model:


Trade


Party

Trader


Normalised


Denormalised




We adapt the concept of a Snowflake 
Schema.




Taking the concept of Facts and 
Dimensions




Everything starts from a Core Fact 
(Trades for us)




Facts are Big, dimensions are small 




Facts have one key




Dimensions have many"
(crosscutting) keys




Looking at the data:


Valuation Legs

Valuations

Part  Transaction Mapping

Cashflow Mapping

Party Alias

Transaction

Cashflows

Legs

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

0 37,500,000 75,000,000 112,500,000 150,000,000

Facts:

=>Big, 

common 
keys


Dimensions

=>Small,

crosscutting 

Keys




We remember we are a grid. We 
should avoid the distributed join.




… so we only want to ‘join’ data that 
is in the same process


Trades
 MTMs


Common 
Key


Coherence’s 
KeyAssociation 

gives us this




So we prescribe different physical 
storage for Facts and Dimensions


Trade


Party

Trader


Partitioned

(Key association ensures 

joins are in process)


Replicated




Facts are held distributed, 
Dimensions are replicated


Valuation Legs

Valuations

Part  Transaction Mapping

Cashflow Mapping

Party Alias

Transaction

Cashflows

Legs

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

0 37,500,000 75,000,000 112,500,000 150,000,000

Facts:

=>Big

=>Distribute


Dimensions

=>Small 

=> Replicate




- Facts are partitioned across the data layer"
- Dimensions are replicated across the Query Layer


D
ata Layer 

Transactions 

Cashflows 

Q
uery Layer 

Mtms 

Fact Storage 
(Partitioned) 

Trade


Party

Trader




Key Point


We use a variant on a 
Snowflake Schema to 

partition big stuff, that has 
the same key and replicate 

small stuff that has 
crosscutting keys.




So how does they help us to run 
queries without distributed joins?


This query involves:


• Joins between Dimensions: to evaluate where clause


• Joins between Facts: Transaction joins to MTM


• Joins between all facts and dimensions needed to 
construct return result  


Select Transaction, MTM, ReferenceData From 
MTM, Transaction, Ref Where Cost Centre = ‘CC1’ 



Stage 1: Focus on the where clause:"
Where Cost Centre = ‘CC1’ 

 




Transactions 

Cashflows 

Mtms 

Partitioned 
Storage 

Stage 1: Get the right keys to query 
the Facts


LBs[]=getLedgerBooksFor(CC1) 

SBs[]=getSourceBooksFor(LBs[]) 

So we have all the bottom level 
dimensions needed to query facts 

 

Select Transaction, MTM, ReferenceData From 
MTM, Transaction, Ref Where Cost Centre = ‘CC1’ 



Transactions 

Cashflows 

Mtms 

Partitioned 
Storage 

Stage 2: Cluster Join to get Facts


LBs[]=getLedgerBooksFor(CC1) 

SBs[]=getSourceBooksFor(LBs[]) 

So we have all the bottom level 
dimensions needed to query facts 

 

Get all Transactions and 
MTMs (cluster side join) for 
the passed Source Books 

 

Select Transaction, MTM, ReferenceData From 
MTM, Transaction, Ref Where Cost Centre = ‘CC1’ 



Stage 2: Join the facts together efficiently 
as we know they are collocated




Transactions 

Cashflows 

Mtms 

Partitioned 
Storage 

Stage 3: Augment raw Facts with 
relevant Dimensions


LBs[]=getLedgerBooksFor(CC1) 

SBs[]=getSourceBooksFor(LBs[]) 

So we have all the bottom level 
dimensions needed to query facts 

 

Get all Transactions and 
MTMs (cluster side join) for 
the passed Source Books 

 

Populate raw facts 
(Transactions) with 
dimension data 
before returning to 
client.  

 

Select Transaction, MTM, ReferenceData From 
MTM, Transaction, Ref Where Cost Centre = ‘CC1’ 



Stage 3: Bind relevant dimensions to 
the result




Bringing it together:


Java 
client


API


Replicated 
Dimensions


Partitioned

 Facts


We never have to do a distributed join!




Coherence Voodoo: Joining 
Distributed Facts across the Cluster


Trades
 MTMs


Aggregator


Related Trades and MTMs 
(Facts) are collocated on the 
same machine with Key Affinity.  


Direct backing map access 
must be used due to threading 
issues in Coherence


http://www.benstopford.com/
2009/11/20/how-to-perform-efficient-

cross-cache-joins-in-coherence/




So we are 
normalised


And we can join 
without extra 
network hops




We get to do this…


Trade


Party

Trader


Trade
 Party
Trader




…and this…


Trade


Party

Trader
 Version 1


Trade


Party

Trader
 Version 2


Trade


Party

Trader
 Version 3


Trade


Party

Trader
 Version 4




..and this..


Trade
 Party
 Trader


Trade


Trade


Party


Party


Party


Trader


Trader




…without the problems of this…




…or this..




..all at the speed of this… well almost!






But there is a fly in the ointment…




Valuation Legs

Valuations

Part  Transaction Mapping

Cashflow Mapping

Party Alias

Transaction

Cashflows

Legs

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

0 125,000,000

I lied earlier. These aren’t all Facts.


Facts


Dimensions


This is a dimension

•  It has a different 

key to the Facts.

•  And it’s BIG




We can’t replicate really big stuff… we’ll 
run out of space"
 => Big Dimensions are a problem.




Fortunately we found a simple 
solution!




We noticed that whilst there are lots 
of these big dimensions, we didn’t 
actually use a lot of them. They are 
not all “connected”.




If there are no Trades for Barclays in 
the data store then a Trade Query will 
never need the Barclays Counterparty




Looking at the All Dimension Data 
some are quite large


Party Alias

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

0 1,250,000 2,500,000 3,750,000 5,000,000



But Connected Dimension Data is tiny 
by comparison


Party Alias

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

20 1,250,015 2,500,010 3,750,005 5,000,000



So we only replicate 
‘Connected’ or ‘Used’ 

dimensions




As data is written to the data store we keep our 
‘Connected Caches’ up to date


D
ata Layer 

Dimension Caches 
(Replicated) 

Transactions 

Cashflows 

P
rocessing Layer 

Mtms 

Fact Storage 
(Partitioned) 

As new Facts are added 
relevant Dimensions that 
they reference are moved 
to processing layer caches 

 



Coherence Voodoo: ‘Connected 
Replication’




The Replicated Layer is updated by 
recursing through the arcs on the 
domain model when facts change




Saving a trade causes all it’s 1st level 
references to be triggered


Trade


Party 
Alias




Source 
Book


Ccy


Data Layer

(All Normalised)


Query Layer

(With connected 
dimension Caches)


Save Trade


Partitioned 

Cache


Cache 
Store


Trigger




This updates the connected caches


Trade


Party 
Alias




Source 
Book


Ccy


Data Layer

(All Normalised)


Query Layer

(With connected 
dimension Caches)




The process recurses through the object 
graph


Trade


Party 
Alias




Source 
Book


Ccy


Party




Ledger
Book


Data Layer

(All Normalised)


Query Layer

(With connected 
dimension Caches)




‘Connected Replication’


A simple pattern which 
recurses through the foreign 
keys in the domain model, 
ensuring only ‘Connected’ 
dimensions are replicated




Limitations of this approach


• Data set size. Size of connected dimensions limits 
scalability.


• Joins are only supported between “Facts” that can 
share a partitioning key (But any dimension join can be 
supported)




Performance is very sensitive to 
serialisation costs: Avoid with POF


Integer ID
 Binary Value


Deserialise just one field 
from the object stream




Other cool stuff 


(very briefly)




Everything is Java


Java 
client


API
Java schema
 Java ‘Stored 
Procedures’ 

and ‘Triggers’




Messaging as a System of Record"
"
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ODC provides a realtime 
view over any part of the 
dataset as messaging is the 
used as the system of 
record.


Messaging provides a more 
scalable system of record 
than a database would.
D

at
a 

La
ye

r Transactions 

Cashflows 

P
ro

ce
ss

in
g 

La
ye

r 

Mtms 

A
cc

es
s 

La
ye

r 

Java 
client!

API!

Java 
client!

API!



Being event based changes the 
programming model.


The system provides both real 
time and query based views on 

the data. 


The two are linked using 
versioning


Replication to DR, DB, fact 
aggregation




API – Queries utilise a fluent interface




Performance


Query with more 
than twenty joins 

conditions:


2GB per min / 
250Mb/s 


(per client)

3ms latency




Conclusion


Data warehousing, OLTP and Distributed 
caching fields are all converging on in-
memory architectures to get away from 
disk induced latencies. 




Conclusion


Shared nothing architectures are always 
subject to the distributed join problem if 
they are to retain a degree of normalisation.




Conclusion


We present a novel mechanism for 
avoiding the distributed join problem by 
using a Star Schema to define whether 
data should be replicated or partitioned.




Partitioned 
Storage 



Conclusion


We make the pattern applicable to ‘real’ 
data models by only replicating objects 
that are actually used:  the Connected 
Replication pattern.




The End

• Further details online http://www.benstopford.com 

(linked from my Qcon bio)


• A big thanks to the team in both India and the UK who 
built this thing.


• Questions?



