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The internet era has 
moved us away from 
traditional database 
architecture, now a 
quarter of a century 
old. 

Industry and academia 
have responded with a 
variety of solutions that 
leverage distribution, use 
of a simpler contract and 
RAM storage. 

We introduce ODC a 
NoSQL store with a 
unique mechanism 
for efficiently 
managing normalised 
data. 

We show how we 
adapt the concept of 
a  Snowflake Schema 
to aid the application 
of replication and 
partitioning and avoid 
problems with 
distributed joins. 

The result is a highly 
scalable, in-memory 
data store that can 
support both millisecond 
queries and high 
bandwidth exports over 
a normalised object 
model. 

Finally we introduce the 
‘Connected Replication’ 
pattern as mechanism 
for making the star 
schema practical for in 
memory architectures. 

The Story…



Database Architecture is Old

Most modern databases still follow a 
1970s architecture (for example IBM’s 
System R)



 “Because RDBMSs can be beaten by more than 
an order of magnitude on the standard OLTP 
benchmark, then there is no market where they 
are competitive. As such, they should be 
considered as legacy technology more than a 
quarter of a century in age, for which a complete 
redesign and re-architecting is the appropriate 
next step.”





Michael Stonebraker (Creator of Ingres and Postgres)

 



What steps have we taken 
to improve the 

performance of this 
original architecture?



Improving Database Performance (1)"
Shared Disk Architecture

Shared
Disk



Improving Database Performance (2)"
Shared Nothing Architecture

Shared Nothing



Improving Database Performance (3)"

In Memory Databases



Improving Database Performance (4)"
Distributed In Memory (Shared Nothing)



Improving Database Performance (5) "
Distributed Caching

Distributed Cache



These approaches are converging

Regular 
Database

Distributed 
Caching

Shared 
Nothing

Oracle, Sybase, 
MySql

Teradata, Vertica,
NoSQL…

Coherence, 
Gemfire, 

Gigaspaces 

ODC

Shared 
Nothing

(memory)
VoltDB, Hstore



So how can we make a data store go 
even faster?

Distributed Architecture

Drop ACID: Simplify 
the Contract.

Drop disk



(1) Distribution for Scalability: The 
Shared Nothing Architecture

• Originated in 1990 (Gamma 
DB) but popularised by 
Teradata / BigTable /
NoSQL

• Massive storage potential

• Massive scalability of 
processing

• Commodity hardware

• Limited by cross partition 
joins

Autonomous processing unit
for a data subset



(2) Simplifying the Contract

• For many users ACID is overkill.

•  Implementing ACID in a distributed architecture has a 
significant affect on performance.

• NoSQL Movement: CouchDB, MongoDB,10gen, 
Basho, CouchOne, Cloudant, Cloudera, GoGrid, 
InfiniteGraph, Membase, Riptano, Scality….



Databases have huge operational 
overheads

Taken from “OLTP Through 
the Looking Glass, and What 
We Found There” 
Harizopoulos et al 



(3) Memory is 100x faster than disk

0.000,000,000,000

μs ns psms

L1 Cache Ref

L2 Cache Ref

Main Memory
Ref

1MB Main Memory

Cross Network 
Round Trip

Cross Continental 
Round Trip

1MB Disk/Network

* L1 ref is about 2 clock cycles or 0.7ns. This is 
the time it takes light to travel 20cm



Avoid all that overhead

RAM means:

• No IO

• Single Threaded

⇒ No locking / latching

• Rapid aggregation etc

• Query plans become less 
important



We were keen to leverage these three 
factors in building the ODC

Distribution Simplify the 
contract

Memory 
Only



What is the ODC?


Highly distributed, in memory, normalised data 
store designed for scalable data access and 

processing.





The Concept

Originating from Scott Marcar’s concept of a central 
brain within the bank: 

“The copying of data lies at the 
route of many of the bank’s 
problems. By supplying a single 
real-time view that all systems can 
interface with we remove the need 
for reconciliation and promote the 
concept of truly shared services” - 
Scott Marcar (Head of Risk and 
Finance Technology)



This is quite tricky problem

High Bandwidth 
Access to Lots 

of Data

Low Latency 
Access to 

small 
amounts of 

data

Scalability to 
lots of users



ODC Data Grid: Highly Distributed 
Physical Architecture

In-memory 
storage

Messaging (Topic Based) as a system of record
(persistence)

Lots of parallel 
processing Oracle 

Coherence



The Layers"
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But unlike most caches the ODC is 
Normalised



Three Tools of Distributed Data 
Architecture

Indexing

ReplicationPartitioning



For speed, replication is best

Wherever you go the 
data will be there

But your storage is limited by 
the memory on a node



For scalability, partitioning is best

Keys Aa-Ap

Scalable storage, bandwidth 
and processing

Keys Fs-Fz Keys Xa-Yd



Traditional Distributed Caching 
Approach

Trade

Party
Trader

Keys Aa-Ap

Big Denormliased 
Objects are spread 
across a distributed 
cache

Keys Fs-Fz Keys Xa-Yd



But we believe a data 
store needs to be more 
than this: it needs to be 

normalised!



So why is that?

Surely denormalisation 
is going to be faster?



Denormalisation means replicating 
parts of your object model



…and that means managing 
consistency over lots of copies



… as parts of the object graph will be 
copied multiple times

Trade

Party
Trader

Periphery objects that are 
denormalised onto core objects 
will be duplicated multiple times 
across the data grid. 

Party A



…and all the duplication means you 
run out of space really quickly



Spaces issues are exaggerated 
further when data is versioned 

Trade

Party
Trader Version 1

Trade

Party
Trader Version 2

Trade

Party
Trader Version 3

Trade

Party
Trader Version 4

…and you need 
versioning to do MVCC



And reconstituting a previous time 
slice becomes very difficult.

Trade Party Trader

Trade

Trade

Party

Party

Party

Trader

Trader



Why Normalisation?

Easy to change data (no 
distributed locks / transactions)

Better use of memory.

Facilitates Versioning

And MVCC/Bi-temporal



OK, OK, lets normalise 
our data then. What 

does that mean?



We decompose our 
domain model and 
hold each object 

separately



This means the object graph will be 
split across multiple machines.

Trade

Party
Trader

Trade PartyTrader



Binding them back together involves a 
“distributed join” => Lots of network hops

Trade

Party
Trader

Trade PartyTrader



It’s going to be slow… 



Whereas the denormalised model the 
join is already done



Hence Denormalisation is FAST!"
(for reads) 



So what we want is the advantages of a 
normalised store at the speed of a 
denormalised one! "
"
 "

This is what the ODC is all about!



Looking more closely: Why does 
normalisation mean we have to be 

spread data around the cluster. Why 
can’t we hold it all together?



It’s all about the keys



We can collocate data with common keys but if they 
crosscut the only way to collocate is to replicate

Common 
Keys

Crosscutting
Keys



We tackle this problem with a hybrid 
model:

Trade

Party
Trader

Normalised

Denormalised



We adapt the concept of a Snowflake 
Schema.



Taking the concept of Facts and 
Dimensions



Everything starts from a Core Fact 
(Trades for us)



Facts are Big, dimensions are small 



Facts have one key



Dimensions have many"
(crosscutting) keys



Looking at the data:

Valuation Legs

Valuations

Part  Transaction Mapping

Cashflow Mapping

Party Alias

Transaction

Cashflows

Legs

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

0 37,500,000 75,000,000 112,500,000 150,000,000

Facts:
=>Big, 
common 
keys

Dimensions
=>Small,
crosscutting 
Keys



We remember we are a grid. We 
should avoid the distributed join.



… so we only want to ‘join’ data that 
is in the same process

Trades MTMs

Common 
Key

Coherence’s 
KeyAssociation 

gives us this



So we prescribe different physical 
storage for Facts and Dimensions

Trade

Party
Trader

Partitioned
(Key association ensures 

joins are in process)

Replicated



Facts are held distributed, 
Dimensions are replicated

Valuation Legs

Valuations

Part  Transaction Mapping

Cashflow Mapping

Party Alias

Transaction

Cashflows

Legs

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

0 37,500,000 75,000,000 112,500,000 150,000,000

Facts:
=>Big
=>Distribute

Dimensions
=>Small 
=> Replicate



- Facts are partitioned across the data layer"
- Dimensions are replicated across the Query Layer

D
ata Layer 

Transactions 

Cashflows 

Q
uery Layer 

Mtms 

Fact Storage 
(Partitioned) 

Trade

Party
Trader



Key Point

We use a variant on a 
Snowflake Schema to 

partition big stuff, that has 
the same key and replicate 

small stuff that has 
crosscutting keys.



So how does they help us to run 
queries without distributed joins?

This query involves:

• Joins between Dimensions: to evaluate where clause

• Joins between Facts: Transaction joins to MTM

• Joins between all facts and dimensions needed to 
construct return result  

Select Transaction, MTM, ReferenceData From 
MTM, Transaction, Ref Where Cost Centre = ‘CC1’ 



Stage 1: Focus on the where clause:"
Where Cost Centre = ‘CC1’ 

 



Transactions 

Cashflows 

Mtms 

Partitioned 
Storage 

Stage 1: Get the right keys to query 
the Facts

LBs[]=getLedgerBooksFor(CC1) 

SBs[]=getSourceBooksFor(LBs[]) 

So we have all the bottom level 
dimensions needed to query facts 

 

Select Transaction, MTM, ReferenceData From 
MTM, Transaction, Ref Where Cost Centre = ‘CC1’ 



Transactions 

Cashflows 

Mtms 

Partitioned 
Storage 

Stage 2: Cluster Join to get Facts

LBs[]=getLedgerBooksFor(CC1) 

SBs[]=getSourceBooksFor(LBs[]) 

So we have all the bottom level 
dimensions needed to query facts 

 

Get all Transactions and 
MTMs (cluster side join) for 
the passed Source Books 

 

Select Transaction, MTM, ReferenceData From 
MTM, Transaction, Ref Where Cost Centre = ‘CC1’ 



Stage 2: Join the facts together efficiently 
as we know they are collocated



Transactions 

Cashflows 

Mtms 

Partitioned 
Storage 

Stage 3: Augment raw Facts with 
relevant Dimensions

LBs[]=getLedgerBooksFor(CC1) 

SBs[]=getSourceBooksFor(LBs[]) 

So we have all the bottom level 
dimensions needed to query facts 

 

Get all Transactions and 
MTMs (cluster side join) for 
the passed Source Books 

 

Populate raw facts 
(Transactions) with 
dimension data 
before returning to 
client.  

 

Select Transaction, MTM, ReferenceData From 
MTM, Transaction, Ref Where Cost Centre = ‘CC1’ 



Stage 3: Bind relevant dimensions to 
the result



Bringing it together:

Java 
client

API

Replicated 
Dimensions

Partitioned
 Facts

We never have to do a distributed join!



Coherence Voodoo: Joining 
Distributed Facts across the Cluster

Trades MTMs

Aggregator

Related Trades and MTMs 
(Facts) are collocated on the 
same machine with Key Affinity.  

Direct backing map access 
must be used due to threading 
issues in Coherence

http://www.benstopford.com/
2009/11/20/how-to-perform-efficient-

cross-cache-joins-in-coherence/



So we are 
normalised

And we can join 
without extra 
network hops



We get to do this…

Trade

Party
Trader

Trade PartyTrader



…and this…

Trade

Party
Trader Version 1

Trade

Party
Trader Version 2

Trade

Party
Trader Version 3

Trade

Party
Trader Version 4



..and this..

Trade Party Trader

Trade

Trade

Party

Party

Party

Trader

Trader



…without the problems of this…



…or this..



..all at the speed of this… well almost!





But there is a fly in the ointment…



Valuation Legs

Valuations

Part  Transaction Mapping

Cashflow Mapping

Party Alias

Transaction

Cashflows

Legs

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

0 125,000,000

I lied earlier. These aren’t all Facts.

Facts

Dimensions

This is a dimension
•  It has a different 

key to the Facts.
•  And it’s BIG



We can’t replicate really big stuff… we’ll 
run out of space"
 => Big Dimensions are a problem.



Fortunately we found a simple 
solution!



We noticed that whilst there are lots 
of these big dimensions, we didn’t 
actually use a lot of them. They are 
not all “connected”.



If there are no Trades for Barclays in 
the data store then a Trade Query will 
never need the Barclays Counterparty



Looking at the All Dimension Data 
some are quite large

Party Alias

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

0 1,250,000 2,500,000 3,750,000 5,000,000



But Connected Dimension Data is tiny 
by comparison

Party Alias

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

20 1,250,015 2,500,010 3,750,005 5,000,000



So we only replicate 
‘Connected’ or ‘Used’ 

dimensions



As data is written to the data store we keep our 
‘Connected Caches’ up to date

D
ata Layer 

Dimension Caches 
(Replicated) 

Transactions 

Cashflows 

P
rocessing Layer 

Mtms 

Fact Storage 
(Partitioned) 

As new Facts are added 
relevant Dimensions that 
they reference are moved 
to processing layer caches 

 



Coherence Voodoo: ‘Connected 
Replication’



The Replicated Layer is updated by 
recursing through the arcs on the 
domain model when facts change



Saving a trade causes all it’s 1st level 
references to be triggered

Trade

Party 
Alias


Source 
Book

Ccy

Data Layer
(All Normalised)

Query Layer
(With connected 
dimension Caches)

Save Trade

Partitioned 
Cache

Cache 
Store

Trigger



This updates the connected caches

Trade

Party 
Alias


Source 
Book

Ccy

Data Layer
(All Normalised)

Query Layer
(With connected 
dimension Caches)



The process recurses through the object 
graph

Trade

Party 
Alias


Source 
Book

Ccy

Party


Ledger
Book

Data Layer
(All Normalised)

Query Layer
(With connected 
dimension Caches)



‘Connected Replication’

A simple pattern which 
recurses through the foreign 
keys in the domain model, 
ensuring only ‘Connected’ 
dimensions are replicated



Limitations of this approach

• Data set size. Size of connected dimensions limits 
scalability.

• Joins are only supported between “Facts” that can 
share a partitioning key (But any dimension join can be 
supported)



Performance is very sensitive to 
serialisation costs: Avoid with POF

Integer ID Binary Value

Deserialise just one field 
from the object stream



Other cool stuff 

(very briefly)



Everything is Java

Java 
client

APIJava schema Java ‘Stored 
Procedures’ 

and ‘Triggers’



Messaging as a System of Record"
"
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ODC provides a realtime 
view over any part of the 
dataset as messaging is the 
used as the system of 
record.

Messaging provides a more 
scalable system of record 
than a database would.D
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Java 
client!

API!

Java 
client!

API!



Being event based changes the 
programming model.

The system provides both real 
time and query based views on 

the data. 

The two are linked using 
versioning

Replication to DR, DB, fact 
aggregation



API – Queries utilise a fluent interface



Performance

Query with more 
than twenty joins 

conditions:

2GB per min / 
250Mb/s 

(per client)
3ms latency



Conclusion

Data warehousing, OLTP and Distributed 
caching fields are all converging on in-
memory architectures to get away from 
disk induced latencies. 



Conclusion

Shared nothing architectures are always 
subject to the distributed join problem if 
they are to retain a degree of normalisation.



Conclusion

We present a novel mechanism for 
avoiding the distributed join problem by 
using a Star Schema to define whether 
data should be replicated or partitioned.


Partitioned 
Storage 



Conclusion

We make the pattern applicable to ‘real’ 
data models by only replicating objects 
that are actually used:  the Connected 
Replication pattern.



The End
• Further details online http://www.benstopford.com 

(linked from my Qcon bio)

• A big thanks to the team in both India and the UK who 
built this thing.

• Questions?


