
ODC

Beyond The Data Grid: Coherence, Normalisation, Joins
and Linear Scalability

Ben Stopford : RBS

The internet era has
moved us away from
traditional database
architecture, now a
quarter of a century
old.

Industry and academia
have responded with a
variety of solutions that
leverage distribution, use
of a simpler contract and
RAM storage.

We introduce ODC a
NoSQL store with a
unique mechanism
for efficiently
managing normalised
data.

We show how we
adapt the concept of
a Snowflake Schema
to aid the application
of replication and
partitioning and avoid
problems with
distributed joins.

The result is a highly
scalable, in-memory
data store that can
support both millisecond
queries and high
bandwidth exports over
a normalised object
model.

Finally we introduce the
‘Connected Replication’
pattern as mechanism
for making the star
schema practical for in
memory architectures.

The Story…

Database Architecture is Old

Most modern databases still follow a
1970s architecture (for example IBM’s
System R)

 “Because RDBMSs can be beaten by more than
an order of magnitude on the standard OLTP
benchmark, then there is no market where they
are competitive. As such, they should be
considered as legacy technology more than a
quarter of a century in age, for which a complete
redesign and re-architecting is the appropriate
next step.”

Michael Stonebraker (Creator of Ingres and Postgres)

What steps have we taken
to improve the

performance of this
original architecture?

Improving Database Performance (1)"
Shared Disk Architecture

Shared

Disk

Improving Database Performance (2)"
Shared Nothing Architecture

Shared Nothing

Improving Database Performance (3)"

In Memory Databases

Improving Database Performance (4)"
Distributed In Memory (Shared Nothing)

Improving Database Performance (5) "
Distributed Caching

Distributed Cache

These approaches are converging

Regular
Database

Distributed
Caching

Shared

Nothing

Oracle, Sybase,
MySql

Teradata, Vertica,

NoSQL…

Coherence,
Gemfire,

Gigaspaces

ODC

Shared

Nothing

(memory)

VoltDB, Hstore

So how can we make a data store go
even faster?

Distributed Architecture

Drop ACID: Simplify
the Contract.

Drop disk

(1) Distribution for Scalability: The
Shared Nothing Architecture

• Originated in 1990 (Gamma
DB) but popularised by
Teradata / BigTable /
NoSQL

• Massive storage potential

• Massive scalability of
processing

• Commodity hardware

• Limited by cross partition
joins

Autonomous processing unit

for a data subset

(2) Simplifying the Contract

• For many users ACID is overkill.

•  Implementing ACID in a distributed architecture has a
significant affect on performance.

• NoSQL Movement: CouchDB, MongoDB,10gen,
Basho, CouchOne, Cloudant, Cloudera, GoGrid,
InfiniteGraph, Membase, Riptano, Scality….

Databases have huge operational
overheads

Taken from “OLTP Through
the Looking Glass, and What
We Found There”
Harizopoulos et al

(3) Memory is 100x faster than disk

0.000,000,000,000

μs
 ns
 ps
ms

L1 Cache Ref

L2 Cache Ref

Main Memory

Ref

1MB Main Memory

Cross Network
Round Trip

Cross Continental
Round Trip

1MB Disk/Network

* L1 ref is about 2 clock cycles or 0.7ns. This is
the time it takes light to travel 20cm

Avoid all that overhead

RAM means:

• No IO

• Single Threaded

⇒ No locking / latching

• Rapid aggregation etc

• Query plans become less
important

We were keen to leverage these three
factors in building the ODC

Distribution
 Simplify the
contract

Memory
Only

What is the ODC?

Highly distributed, in memory, normalised data
store designed for scalable data access and

processing.

The Concept

Originating from Scott Marcar’s concept of a central
brain within the bank:

“The copying of data lies at the
route of many of the bank’s
problems. By supplying a single
real-time view that all systems can
interface with we remove the need
for reconciliation and promote the
concept of truly shared services” -
Scott Marcar (Head of Risk and
Finance Technology)

This is quite tricky problem

High Bandwidth
Access to Lots

of Data

Low Latency
Access to

small
amounts of

data

Scalability to
lots of users

ODC Data Grid: Highly Distributed
Physical Architecture

In-memory
storage

Messaging (Topic Based) as a system of record

(persistence)

Lots of parallel
processing
 Oracle

Coherence

The Layers"
"

D
at

a
La

ye
r Transactions

Cashflows

Q
ue

ry
 L

ay
er

Mtms

A
cc

es
s

La
ye

r
Java
client

API

Java
client

API

P
er

si
st

en
ce

 L
ay

er

But unlike most caches the ODC is
Normalised

Three Tools of Distributed Data
Architecture

Indexing

Replication
Partitioning

For speed, replication is best

Wherever you go the
data will be there

But your storage is limited by
the memory on a node

For scalability, partitioning is best

Keys Aa-Ap

Scalable storage, bandwidth
and processing

Keys Fs-Fz
 Keys Xa-Yd

Traditional Distributed Caching
Approach

Trade

Party

Trader

Keys Aa-Ap

Big Denormliased
Objects are spread
across a distributed
cache

Keys Fs-Fz
 Keys Xa-Yd

But we believe a data
store needs to be more
than this: it needs to be

normalised!

So why is that?

Surely denormalisation
is going to be faster?

Denormalisation means replicating
parts of your object model

…and that means managing
consistency over lots of copies

… as parts of the object graph will be
copied multiple times

Trade

Party

Trader

Periphery objects that are
denormalised onto core objects
will be duplicated multiple times
across the data grid.

Party A

…and all the duplication means you
run out of space really quickly

Spaces issues are exaggerated
further when data is versioned

Trade

Party

Trader
 Version 1

Trade

Party

Trader
 Version 2

Trade

Party

Trader
 Version 3

Trade

Party

Trader
 Version 4

…and you need
versioning to do MVCC

And reconstituting a previous time
slice becomes very difficult.

Trade
 Party
 Trader

Trade

Trade

Party

Party

Party

Trader

Trader

Why Normalisation?

Easy to change data (no
distributed locks / transactions)

Better use of memory.

Facilitates Versioning

And MVCC/Bi-temporal

OK, OK, lets normalise
our data then. What

does that mean?

We decompose our
domain model and
hold each object

separately

This means the object graph will be
split across multiple machines.

Trade

Party

Trader

Trade
 Party
Trader

Binding them back together involves a
“distributed join” => Lots of network hops

Trade

Party

Trader

Trade
 Party
Trader

It’s going to be slow…

Whereas the denormalised model the
join is already done

Hence Denormalisation is FAST!"
(for reads)

So what we want is the advantages of a
normalised store at the speed of a
denormalised one! "
"

 "

This is what the ODC is all about!

Looking more closely: Why does
normalisation mean we have to be

spread data around the cluster. Why
can’t we hold it all together?

It’s all about the keys

We can collocate data with common keys but if they
crosscut the only way to collocate is to replicate

Common
Keys

Crosscutting

Keys

We tackle this problem with a hybrid
model:

Trade

Party

Trader

Normalised

Denormalised

We adapt the concept of a Snowflake
Schema.

Taking the concept of Facts and
Dimensions

Everything starts from a Core Fact
(Trades for us)

Facts are Big, dimensions are small

Facts have one key

Dimensions have many"
(crosscutting) keys

Looking at the data:

Valuation Legs

Valuations

Part Transaction Mapping

Cashflow Mapping

Party Alias

Transaction

Cashflows

Legs

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

0 37,500,000 75,000,000 112,500,000 150,000,000

Facts:

=>Big,

common
keys

Dimensions

=>Small,

crosscutting

Keys

We remember we are a grid. We
should avoid the distributed join.

… so we only want to ‘join’ data that
is in the same process

Trades
 MTMs

Common
Key

Coherence’s
KeyAssociation

gives us this

So we prescribe different physical
storage for Facts and Dimensions

Trade

Party

Trader

Partitioned

(Key association ensures

joins are in process)

Replicated

Facts are held distributed,
Dimensions are replicated

Valuation Legs

Valuations

Part Transaction Mapping

Cashflow Mapping

Party Alias

Transaction

Cashflows

Legs

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

0 37,500,000 75,000,000 112,500,000 150,000,000

Facts:

=>Big

=>Distribute

Dimensions

=>Small

=> Replicate

- Facts are partitioned across the data layer"
- Dimensions are replicated across the Query Layer

D
ata Layer

Transactions

Cashflows

Q
uery Layer

Mtms

Fact Storage
(Partitioned)

Trade

Party

Trader

Key Point

We use a variant on a
Snowflake Schema to

partition big stuff, that has
the same key and replicate

small stuff that has
crosscutting keys.

So how does they help us to run
queries without distributed joins?

This query involves:

• Joins between Dimensions: to evaluate where clause

• Joins between Facts: Transaction joins to MTM

• Joins between all facts and dimensions needed to
construct return result

Select Transaction, MTM, ReferenceData From
MTM, Transaction, Ref Where Cost Centre = ‘CC1’

Stage 1: Focus on the where clause:"
Where Cost Centre = ‘CC1’

Transactions

Cashflows

Mtms

Partitioned
Storage

Stage 1: Get the right keys to query
the Facts

LBs[]=getLedgerBooksFor(CC1)

SBs[]=getSourceBooksFor(LBs[])

So we have all the bottom level
dimensions needed to query facts

Select Transaction, MTM, ReferenceData From
MTM, Transaction, Ref Where Cost Centre = ‘CC1’

Transactions

Cashflows

Mtms

Partitioned
Storage

Stage 2: Cluster Join to get Facts

LBs[]=getLedgerBooksFor(CC1)

SBs[]=getSourceBooksFor(LBs[])

So we have all the bottom level
dimensions needed to query facts

Get all Transactions and
MTMs (cluster side join) for
the passed Source Books

Select Transaction, MTM, ReferenceData From
MTM, Transaction, Ref Where Cost Centre = ‘CC1’

Stage 2: Join the facts together efficiently
as we know they are collocated

Transactions

Cashflows

Mtms

Partitioned
Storage

Stage 3: Augment raw Facts with
relevant Dimensions

LBs[]=getLedgerBooksFor(CC1)

SBs[]=getSourceBooksFor(LBs[])

So we have all the bottom level
dimensions needed to query facts

Get all Transactions and
MTMs (cluster side join) for
the passed Source Books

Populate raw facts
(Transactions) with
dimension data
before returning to
client.

Select Transaction, MTM, ReferenceData From
MTM, Transaction, Ref Where Cost Centre = ‘CC1’

Stage 3: Bind relevant dimensions to
the result

Bringing it together:

Java
client

API

Replicated
Dimensions

Partitioned

 Facts

We never have to do a distributed join!

Coherence Voodoo: Joining
Distributed Facts across the Cluster

Trades
 MTMs

Aggregator

Related Trades and MTMs
(Facts) are collocated on the
same machine with Key Affinity.

Direct backing map access
must be used due to threading
issues in Coherence

http://www.benstopford.com/
2009/11/20/how-to-perform-efficient-

cross-cache-joins-in-coherence/

So we are
normalised

And we can join
without extra
network hops

We get to do this…

Trade

Party

Trader

Trade
 Party
Trader

…and this…

Trade

Party

Trader
 Version 1

Trade

Party

Trader
 Version 2

Trade

Party

Trader
 Version 3

Trade

Party

Trader
 Version 4

..and this..

Trade
 Party
 Trader

Trade

Trade

Party

Party

Party

Trader

Trader

…without the problems of this…

…or this..

..all at the speed of this… well almost!

But there is a fly in the ointment…

Valuation Legs

Valuations

Part Transaction Mapping

Cashflow Mapping

Party Alias

Transaction

Cashflows

Legs

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

0 125,000,000

I lied earlier. These aren’t all Facts.

Facts

Dimensions

This is a dimension

•  It has a different

key to the Facts.

•  And it’s BIG

We can’t replicate really big stuff… we’ll
run out of space"
 => Big Dimensions are a problem.

Fortunately we found a simple
solution!

We noticed that whilst there are lots
of these big dimensions, we didn’t
actually use a lot of them. They are
not all “connected”.

If there are no Trades for Barclays in
the data store then a Trade Query will
never need the Barclays Counterparty

Looking at the All Dimension Data
some are quite large

Party Alias

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

0 1,250,000 2,500,000 3,750,000 5,000,000

But Connected Dimension Data is tiny
by comparison

Party Alias

Parties

Ledger Book

Source Book

Cost Centre

Product

Risk Organisation Unit

Business Unit

HCS Entity

Set of Books

20 1,250,015 2,500,010 3,750,005 5,000,000

So we only replicate
‘Connected’ or ‘Used’

dimensions

As data is written to the data store we keep our
‘Connected Caches’ up to date

D
ata Layer

Dimension Caches
(Replicated)

Transactions

Cashflows

P
rocessing Layer

Mtms

Fact Storage
(Partitioned)

As new Facts are added
relevant Dimensions that
they reference are moved
to processing layer caches

Coherence Voodoo: ‘Connected
Replication’

The Replicated Layer is updated by
recursing through the arcs on the
domain model when facts change

Saving a trade causes all it’s 1st level
references to be triggered

Trade

Party
Alias

Source
Book

Ccy

Data Layer

(All Normalised)

Query Layer

(With connected
dimension Caches)

Save Trade

Partitioned

Cache

Cache
Store

Trigger

This updates the connected caches

Trade

Party
Alias

Source
Book

Ccy

Data Layer

(All Normalised)

Query Layer

(With connected
dimension Caches)

The process recurses through the object
graph

Trade

Party
Alias

Source
Book

Ccy

Party

Ledger
Book

Data Layer

(All Normalised)

Query Layer

(With connected
dimension Caches)

‘Connected Replication’

A simple pattern which
recurses through the foreign
keys in the domain model,
ensuring only ‘Connected’
dimensions are replicated

Limitations of this approach

• Data set size. Size of connected dimensions limits
scalability.

• Joins are only supported between “Facts” that can
share a partitioning key (But any dimension join can be
supported)

Performance is very sensitive to
serialisation costs: Avoid with POF

Integer ID
 Binary Value

Deserialise just one field
from the object stream

Other cool stuff

(very briefly)

Everything is Java

Java
client

API
Java schema
 Java ‘Stored
Procedures’

and ‘Triggers’

Messaging as a System of Record"
"

P
er

si
st

en
ce

 L
ay

er

ODC provides a realtime
view over any part of the
dataset as messaging is the
used as the system of
record.

Messaging provides a more
scalable system of record
than a database would.
D

at
a

La
ye

r Transactions

Cashflows

P
ro

ce
ss

in
g

La
ye

r

Mtms

A
cc

es
s

La
ye

r

Java
client!

API!

Java
client!

API!

Being event based changes the
programming model.

The system provides both real
time and query based views on

the data.

The two are linked using
versioning

Replication to DR, DB, fact
aggregation

API – Queries utilise a fluent interface

Performance

Query with more
than twenty joins

conditions:

2GB per min /
250Mb/s

(per client)

3ms latency

Conclusion

Data warehousing, OLTP and Distributed
caching fields are all converging on in-
memory architectures to get away from
disk induced latencies.

Conclusion

Shared nothing architectures are always
subject to the distributed join problem if
they are to retain a degree of normalisation.

Conclusion

We present a novel mechanism for
avoiding the distributed join problem by
using a Star Schema to define whether
data should be replicated or partitioned.

Partitioned
Storage

Conclusion

We make the pattern applicable to ‘real’
data models by only replicating objects
that are actually used: the Connected
Replication pattern.

The End

• Further details online http://www.benstopford.com

(linked from my Qcon bio)

• A big thanks to the team in both India and the UK who
built this thing.

• Questions?

