dnorth@drw.com
http://blog.dannorth.net \ Dan North

@tastapod /

"the BDD guy"

"agile troublemaker"

developer |
build primate am
| 8 years with ThoughtWorks
agile process i
coach 20 yearsinIT
development
consultant
organisational change
programmer 1 year (so far!) with DRW Trading
HFT machine-speed trading
. . : we do
heads-up people-speed trading
low latency
high throughput
correct UX we need
\ awesome
obvious
compliance))
— \ data integrity
correctness /-
"reset the board" every week
even they are only guidelines have themes
stuff happens review daily you need a prioritised backlog
really is only a guideline)]
]] ~__macro-level estimation
build trust through delivery /
common sense, communication, trust you need stories & acceptance criteria
useful as long as you are still learning) o
. ~_ analysis paralysis is bad
and the learning is SMART ,
process

behaviour driven from purpose

behaviour should be driven from the Ul
what's the difference between this and ready? }

getting to production exposes flaws

Ul to working app drive journey right through

bold, but not reckless

you can't release rubbish

if your users trust you

and you are responsive to feedback \ best kind of user testing

and you can roll back instantly

waves of diminishing value

permanent scaffolding
so has to be good quality \ write good, short-lived code don't rewrite where you can revive

painting the Forth bridge J
integrate at Ul

have narrow, collaborating services

manual tests uncover subtle bugs

cf QuickCheck)
—~__ also randomized tests automated tests are better than manual tests
concurrency bugs s /

nothing beats putting it live!

mostly test inputs and outputs

hand-roll simple recorders mocks are useful

e.g. sockets don't fear system tests at the edges J

\k technology

expect to refactor for unit testing unit tests should be test-driven!

make the rest "obvious" unit test the risky areas

solve the right problem

. pure TDD => deliberate ignorance! production code should be test-driven]

make system small enough

make the comment stand alone

~_ leave TODOs in the code /
use the word "should" /

quickly adapt/reuse existing code

& te is bad
Ginger Cake \/ copy & paste Is Ba

Spike And Stabilise
spike to explore alternatives \ spikes should be discarded
add tests when it stabilizes j

pairs in "shallow" silos

make design decisions with the team \ rotate pairs, avoid silos
sync up regularly J
you need the skills covered

have generalizing specialists l you need analysts/testers/DBAs/etc.

people

call when you need them have experts on hand

user knows what they want, not how
"I'll know it when | see it"\ put yourself in the user's head

put yourself in a UX designer's head

Setting the scene

Agile says...

Months to minutes

weekly themes

Planning .
H "natural” planning

Pairing in (shallow) silos

1 x recap and planning

Stand-ups
= { 1 x status with sponsor

Programmers & traders on same desk

Dev-ops are critical

Co-location Own your build

Own your testing

What survived? Own your analysis

Refactoring _ mercilessly!

habitability

build, deploy, rollback

Continuous delivery _ _
. sometimes 20-30 times/day!

/
[
\

Automated testing but not -> 100% coverage

eventually!

Intention-revealing test names | "blah”
\ sketching
Focus on reducing ignorance

Kevlin Henney

continuous rewrite

Short Software Half-Life
< three phases

Y Get comfortable with uncertainty I'm not!

What emerged? Deliberate discovery

make it yours

Product ownership]
“__ look with your feet

java, javascript

fast dev/test cycle

< rake, fig
Technology choices fast deploy/undeploy _ side-by-side
fast SCM svn -> git
Anything is better than nothing
o What does the user want to see?
Principles

Assume code won't be there in 2 months

"Onward!"

slow and steady

Not your father's agile

_ Wwhat happened to "people over process"?

even in "the enterprise”

Conclusions / You can go insanely fast

_ but it requires discipline

but wait, that's agile!

Trust and collaboration trumps process

Shoot for the stars you might surprise yourself

