
Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
1

Java SE: A Youthful Maturity
Danny Coward
Principal Engineer and Java Evangelist

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
3

The following is intended to outline our general product
direction. It is intended for information purposes only,
and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing
decisions.
The development, release, and timing of any features or
functionality described for Oracle’s products remains at the
sole discretion of Oracle.

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
3

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
4

The secrets of longevity ?

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
4

The secrets of longevity ?

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
5

What are the secrets for the longevity of the Java Platform?

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
5

What are the secrets for the longevity of the Java Platform?

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
5

Parallel programming

.NET competitiveness
Web Services

Multiple JVM languages
Performance

Scaling from low to high

API breadth

Realtime characteristics
Ease of learning

Productivity

What are the secrets for the longevity of the Java Platform?

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
5

Parallel programming
.NET competitiveness

Web Services
Multiple JVM languages

Performance

Scaling from low to high

API breadth

Realtime characteristics
Ease of learning

Productivity

What are the secrets for the longevity of the Java Platform?

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

1.0
1.1

1.2
1.31.4

5.0

6
1996 1997 1998 2000 2002 2004 2006 2010 2011 2012

78
6

2015

...
...

Multiple JVM languages
Parallel programming

7

Java VM Specification, 1997

7

Java VM Specification, 1997

• The Java Virtual Machine knows nothing about the Java programming language, only of a
particular binary format, the class file format.

• A class file contains Java Virtual Machine instructions (or bytecodes) and a symbol table,
as well as other ancillary information.

• Any language with functionality that can be expressed in terms of a valid class file can be
hosted by the Java virtual machine.

• Attracted by a generally available, machine-independent platform, implementors of other
languages are turning to the Java Virtual Machine as a delivery vehicle for their languages.

• In the future, we will consider bounded extensions to the Java Virtual Machine to provide
better support for other languages.

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Trends in programming languages

8

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
9

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Clojure

Tcl

v-language

Funnel

Mini

Lisp

LogoJHCR

Drools

Prolog

LLP

JESS Eiffel

Smalltalk

G Groovy

Correlate

Bex Script

Sleep

JudoScript

Simkin
WebL

Processing

Tiger

Icon

Modula-2

E

Rexx

JavaFX Script

Present

Scheme

Basic

TermWare

Hojo

Tea

PHP

FScript

Jickle

Piccola

Pascal

Luck

Scala Sather

PLAN

foo

Ada

ObjectScript

iScript

SALSA
Oberon

Phobos

JRuby

Dawn

Jython
Yassl

Forth

Zigzag

Nice

Yoix

C#

Anvil

JavaScript

BeanShell

CAL

Pnuts

9

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
10

 ScriptEngineManager m = new ScriptEngineManager();
 ScriptEngine jsEngine = m.getEngineByName("js");

import javax.script.*

Scripting on Java SE 6 Platform

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
10

 ScriptEngineManager m = new ScriptEngineManager();
 ScriptEngine jsEngine = m.getEngineByName("js");

 jsEngine.eval("print('Hello, world!')");

import javax.script.*

Scripting on Java SE 6 Platform

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
10

 ScriptEngineManager m = new ScriptEngineManager();
 ScriptEngine jsEngine = m.getEngineByName("js");

 InputStream is = this.getClass().getResourceAsStream("/scripts/hello.js");
 Reader reader = new InputStreamReader(is);
 jsEngine.eval(reader);

import javax.script.*

Scripting on Java SE 6 Platform

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
10

 ScriptEngineManager m = new ScriptEngineManager();
 ScriptEngine jsEngine = m.getEngineByName("js");

 jsEngine.eval("function sayHello() {" +
 " println('Hello, world!');" +
 "}");

 Invocable invocableEngine = (Invocable) jsEngine;
 invocableEngine.invokeFunction("sayHello");

import javax.script.*

Scripting on Java SE 6 Platform

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Languages ♥ Virtual Machines

• Programming languages need runtime support
– Memory management / Garbage collection
– Concurrency control
– Security
– Reflection
– Debugging / Profiling
– Standard libraries (collections, database, XML, etc)

• Traditionally, language implementers coded these themselves
• Many implementers now choose to target a VM to reuse

infrastructure

11

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

“Java is fast because it runs on a VM”

• Major breakthrough was the advent of “Just In Time”
compilers [fast]
– Compile from bytecode to machine code at runtime
– Optimize using information available at runtime only

• Simplifies static compilers
– javac and ecj generate “dumb” bytecode and

trust the JVM to optimize
– Optimization is real, but invisible

12

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
13

Optimizations apply (more or less) to all languages

• Optimizations work on bytecode in .class files
• A compiler for any language – not just Java – can emit
a .class file
• All languages can benefit from dynamic compilation and
optimizations like inlining

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

HotSpot optimizations

14

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

compiler tactics
 delayed compilation
 Tiered compilation

 on-stack replacement
 delayed reoptimization

 program dependence graph
representation

 static single assignment
representation

proof-based techniques
 exact type inference

 memory value inference
 memory value tracking

 constant folding
 reassociation

 operator strength reduction
 null check elimination

 type test strength reduction
 type test elimination

 algebraic simplification
 common subexpression elimination

 integer range typing
flow-sensitive rewrites

 conditional constant propagation
 dominating test detection

 flow-carried type narrowing
 dead code elimination

HotSpot optimizations

14

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

compiler tactics
 delayed compilation
 Tiered compilation

 on-stack replacement
 delayed reoptimization

 program dependence graph
representation

 static single assignment
representation

proof-based techniques
 exact type inference

 memory value inference
 memory value tracking

 constant folding
 reassociation

 operator strength reduction
 null check elimination

 type test strength reduction
 type test elimination

 algebraic simplification
 common subexpression elimination

 integer range typing
flow-sensitive rewrites

 conditional constant propagation
 dominating test detection

 flow-carried type narrowing
 dead code elimination

language-specific techniques
 class hierarchy analysis

 devirtualization
 symbolic constant propagation

 autobox elimination
 escape analysis

 lock elision
 lock fusion

 de-reflection
speculative (profile-based) techniques

 optimistic nullness assertions
 optimistic type assertions

 optimistic type strengthening
 optimistic array length strengthening

 untaken branch pruning
 optimistic N-morphic inlining
 branch frequency prediction

 call frequency prediction
memory and placement transformation

 expression hoisting
 expression sinking

 redundant store elimination
 adjacent store fusion
 card-mark elimination
 merge-point splitting

HotSpot optimizations

14

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

compiler tactics
 delayed compilation
 Tiered compilation

 on-stack replacement
 delayed reoptimization

 program dependence graph
representation

 static single assignment
representation

proof-based techniques
 exact type inference

 memory value inference
 memory value tracking

 constant folding
 reassociation

 operator strength reduction
 null check elimination

 type test strength reduction
 type test elimination

 algebraic simplification
 common subexpression elimination

 integer range typing
flow-sensitive rewrites

 conditional constant propagation
 dominating test detection

 flow-carried type narrowing
 dead code elimination

language-specific techniques
 class hierarchy analysis

 devirtualization
 symbolic constant propagation

 autobox elimination
 escape analysis

 lock elision
 lock fusion

 de-reflection
speculative (profile-based) techniques

 optimistic nullness assertions
 optimistic type assertions

 optimistic type strengthening
 optimistic array length strengthening

 untaken branch pruning
 optimistic N-morphic inlining
 branch frequency prediction

 call frequency prediction
memory and placement transformation

 expression hoisting
 expression sinking

 redundant store elimination
 adjacent store fusion
 card-mark elimination
 merge-point splitting

loop transformations
 loop unrolling
 loop peeling

 safepoint elimination
 iteration range splitting
 range check elimination

 loop vectorization
global code shaping

 inlining (graph integration)
 global code motion

 heat-based code layout
 switch balancing

 throw inlining
control flow graph transformation

 local code scheduling
 local code bundling

 delay slot filling
 graph-coloring register allocation

 linear scan register allocation
 live range splitting
 copy coalescing
 constant splitting

 copy removal
 address mode matching
 instruction peepholing

 DFA-based code generator

HotSpot optimizations

14

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Inlining: Example

15

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

public interface FooHolder<T> {
 public T getFoo();
}

Inlining: Example

15

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

public interface FooHolder<T> {
 public T getFoo();
}

public class MyHolder<T> implements FooHolder<T> {
 private final T foo;

 public MyHolder(T foo32) {
 this.foo = foo;
 }

 public T getFoo() {
 return foo;
 }
}

Inlining: Example

15

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

 public interface FooHolder<T> {

 public T getFoo();

 }

 public class MyHolder<T>

 implements FooHolder<T> {

 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }

 }

Inlining: Example

Inlining: Example

16

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

 public interface FooHolder<T> {

 public T getFoo();

 }

 public class MyHolder<T>

 implements FooHolder<T> {

 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }

 }

Inlining: Example

 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
}

Inlining: Example

16

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

 public interface FooHolder<T> {

 public T getFoo();

 }

 public class MyHolder<T>

 implements FooHolder<T> {

 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }

 }

Inlining: Example

 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
}

...
public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 return getString(myFooHolder);
}

Inlining: Example

16

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

 public interface FooHolder<T> {

 public T getFoo();

 }

 public class MyHolder<T>

 implements FooHolder<T> {

 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }

 }

Inlining: Example

 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
}

Step 1
Inline getString() call

...
public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 return getString(myFooHolder);
}

Inlining: Example

16

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

 public interface FooHolder<T> {

 public T getFoo();

 }

 public class MyHolder<T>

 implements FooHolder<T> {

 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }

 }

Inlining: Example

 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
}

...
public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 if (myFooHolder == null)
 throw new NullPointerException("You dummy.");
 else
 return myFooHolder.getFoo();
}

Inlining: Example

17

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

 public interface FooHolder<T> {

 public T getFoo();

 }

 public class MyHolder<T>

 implements FooHolder<T> {

 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }

 }

Inlining: Example

 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
}

...
public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 if (myFooHolder == null)
 throw new NullPointerException("You dummy.");
 else
 return myFooHolder.getFoo();
}

Step 2
Dead code elimination

Inlining: Example

17

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

 public interface FooHolder<T> {

 public T getFoo();

 }

 public class MyHolder<T>

 implements FooHolder<T> {

 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }

 }

Inlining: Example

 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
}

...
public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 return myFooHolder.getFoo();
}

Inlining: Example

18

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Inlining: Example

 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
}

...
public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 return myFooHolder.getFoo();
}

Step 3
Type sharp and inline

 public interface FooHolder<T> {

 public T getFoo();

 }

 public class MyHolder<T>

 implements FooHolder<T> {

 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }
 }

Inlining: Example

18

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

 public interface FooHolder<T> {

 public T getFoo();

 }

 public class MyHolder<T>

 implements FooHolder<T> {

 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }

 }

Inlining: Example

 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
}

...
public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 return myFooHolder.foo;
}

Inlining: Example

19

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Inlining: Example

 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
}

...
public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 return myFooHolder.foo;
}

Step 4
Escape analysis and
scalar replacement

 public interface FooHolder<T> {

 public T getFoo();

 }

 public class MyHolder<T>

 implements FooHolder<T> {

 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }

 }

Inlining: Example

19

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

 public interface FooHolder<T> {

 public T getFoo();

 }

 public class MyHolder<T>

 implements FooHolder<T> {

 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }

 }

Inlining: Example

 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
}

...
public String foo(String x) {
 return x;
}

Inlining: Example

20

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

 public interface FooHolder<T> {

 public T getFoo();

 }

 public class MyHolder<T>

 implements FooHolder<T> {

 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }

 }

Inlining: Example

 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
}

...
public String foo(String x) {
 return x;
}

public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 return getString(myFooHolder);
} ✘

Inlining: Example

20

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Different kinds of languages

21

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
22

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
22

If we could make one change to the JVM
to improve life for dynamic languages,
what would it be?

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
22

If we could make one change to the JVM
to improve life for dynamic languages,
what would it be?

More flexible method calls

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

More flexible method calls

• The invokevirtual bytecode performs a method call
• Its behavior is Java-like and fixed
• Other languages need custom behavior
• Idea: let some “language logic” determine the behavior

of a JVM method call
• Invention: the invokedynamic bytecode

– VM asks some “language logic” how to call a method
– Language logic gives an answer, and decides if it needs to stay

in the loop

23

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
24

What’s next? Da Vinci projects

• The Da Vinci Machine Project continues
• Community contributions:

– Continuations
– Coroutines
– Hotswap
– Tailcalls
– Interface injection

• Gleams in our eyes:
– Object “species” (for splitting classes more finely)
– Tuples and value types (for using registers more efficiently)
– Advanced array types (for using memory more efficiently)

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

1.4 5.0 6
2002 2004 2006 2011 2012

78
25

2015
...
...

Multiple JVM languages

invokedynamic
DaVinci.next

Scripting for the
Java Platform

Next
killer

language ?

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Raise the speed limit ?

26

Traffic Jams

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Raise the speed limit ?Raise the speed limit ?

Build more lanes !

26

Traffic Jams

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Raise the speed limit ?Raise the speed limit ?

Build more lanes !

26

The rise of multi-core/
multi-processor architectures

Traffic Jams

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
27

Multi-core, Multi Processor Servers

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Niagara 1 (2005)

8 x 4 = 32

27

Multi-core, Multi Processor Servers

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Niagara 1 (2005)

8 x 4 = 32

Niagara 2 (2007)

8 x 8 = 64

27

Multi-core, Multi Processor Servers

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Niagara 1 (2005)

8 x 4 = 32

Niagara 2 (2007)

8 x 8 = 64

Rainbow Falls (Now)
16 x 8 = 128

27

Multi-core, Multi Processor Servers

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
28

2002 2004 2006 2008 2010

2 ... 4
8

Desktop ... notepad ... phone
Multicore clients

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Parallel Programming

29

• The runtime only has a partial
view of how to optimize your
application

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Parallel Programming

29

• The runtime only has a partial
view of how to optimize your
application

• It needs your help so it knows
how to parallelize your application

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Concurrency APIs for developers: JDK 1.5

30

• Originally developed for JDK 1.5
• Result of work of JSR 166
• API level toolkit for concurrent programming

- Locks
- Threadpools
- Blocking queues

• Found in java.util.concurrent.*

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Concept of Fork/Join Framework

31
Image: Gareth Jones

http://commons.wikimedia.org/w/index.php?title=User:Gareth_Jones&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Gareth_Jones&action=edit&redlink=1

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Concept of Fork/Join Framework

Large,
compute-intensive

task

31
Image: Gareth Jones

http://commons.wikimedia.org/w/index.php?title=User:Gareth_Jones&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Gareth_Jones&action=edit&redlink=1

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Concept of Fork/Join Framework

Large,
compute-intensive

task

Fork into
subtasks

31
Image: Gareth Jones

http://commons.wikimedia.org/w/index.php?title=User:Gareth_Jones&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Gareth_Jones&action=edit&redlink=1

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Concept of Fork/Join Framework

Large,
compute-intensive

task

Fork into
subtasks

Process tasks
in parallel

31
Image: Gareth Jones

http://commons.wikimedia.org/w/index.php?title=User:Gareth_Jones&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Gareth_Jones&action=edit&redlink=1

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Concept of Fork/Join Framework

Large,
compute-intensive

task

Fork into
subtasks

Process tasks
in parallel

Join subtasks as
they complete

31
Image: Gareth Jones

http://commons.wikimedia.org/w/index.php?title=User:Gareth_Jones&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Gareth_Jones&action=edit&redlink=1

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Concept of Fork/Join Framework

Large,
compute-intensive

task

Fork into
subtasks

Process tasks
in parallel

Join subtasks as
they complete

Completed
task

31
Image: Gareth Jones

http://commons.wikimedia.org/w/index.php?title=User:Gareth_Jones&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:Gareth_Jones&action=edit&redlink=1

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Basic Idea

if (my portion of the work is small enough) {
 do the work directly
} else {
 split my work into two pieces
 invoke the two pieces and wait for the results
}

32

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Fork Join Framework API

• java.util.concurrent.ForkJoinPool
• Special class for managing tasks that will execute in parallel
• Submit new tasks
• Manage lifecycle of tasks
• Monitor task execution

• java.util.concurrent.ForkJoinTask
• Abstract base class encapsulating task to run concurrently
• Like a lightweight thread
• Typically use RecursiveTask or RecursiveAction

33

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Example: Blurring an image

public class ForkBlur {
 private int[] mSource;
 private int mStart;
 private int mLength;
 private int[] mDestination;

 private int mBlurWidth = 15; // Processing window size, should be odd.

 public ForkBlur(int[] src, int start, int length, int[] dst) {
 mSource = src;
 mStart = start;
 mLength = length;
 mDestination = dst;
 }

 ...

34

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

public class ForkBlur {

 ...
 // this is the heavy lifting
 protected void computeDirectly() {
 int sidePixels = (mBlurWidth - 1) / 2;
 for (int index = mStart; index < mStart + mLength; index++) {
 // Calculate average.
 float rt = 0, gt = 0, bt = 0;
 for (int mi = -sidePixels; mi <= sidePixels; mi++) {
 int mindex = Math.min(Math.max(mi + index, 0), mSource.length - 1);
 int pixel = mSource[mindex];
 rt += (float)((pixel & 0x00ff0000) >> 16) / mBlurWidth;
 gt += (float)((pixel & 0x0000ff00) >> 8) / mBlurWidth;
 bt += (float)((pixel & 0x000000ff) >> 0) / mBlurWidth;
 }

 // Re-assemble destination pixel.
 int dpixel = (0xff000000) |
 (((int)rt) << 16) |
 (((int)gt) << 8) |
 (((int)bt) << 0);
 mDestination[index] = dpixel;
 }

 ...

 }
35

Example: Blurring an image

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Heavy lifting in parallel using Fork/Join

public class ForkBlur extends RecursiveAction {

 protected void compute() {
 // use the Fork/Join pattern here

 }
 ...

 protected void computeDirectly() {
 // this is still the heavy lifting

 }

 ...

 }

36

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Basic concept of Fork/Join

if (my portion of the work is small enough) {
 do the work directly
} else {
 split my work into two pieces
 invoke the two pieces and wait for the results
}

37

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Application of Fork/Join

protected static int sThreshold = 100000;

protected void compute() {

 // is my portion of the work is small enough ?
 if (mLength < sThreshold) {

 // just do it
 computeDirectly();
 return;
 } else {

 // split my work into two pieces
 int split = mLength / 2;

 invokeAll(
 new ForkBlur(mSource, mStart, split, mDestination),

 new ForkBlur(mSource, mStart + split, mLength - split, mDestination)
);

 }
}

38

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Running the code

// source image pixels are in src
// destination image pixels are in dst
ForkBlur fb = new ForkBlur(src, 0, src.length, dst);

ForkJoinPool pool = new ForkJoinPool();

// now the work can be executed in parallel
pool.invoke(fb);

39

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Parallel Programming in Java today

40

Ease Supported by

Possible but very tricky Thread API

Well-supported for specialized
purposes Concurrency APIs with Fork/Join

Commonplace Not yet...

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
41

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

class Student {
 String name;
 int gradYear;
 double score;
}

41

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

class Student {
 String name;
 int gradYear;
 double score;
}

Collection<Student> students = ...;

41

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Collection<Student> students = ...;

42

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Collection<Student> students = ...;

double max = Double.MIN_VALUE;
for (Student s : students) {
 if (s.gradYear == 2010)
 max = Math.max(max, s.score);
}

42

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Collection<Student> students = ...;

double max = students.filter(new Predicate<Student>() {
 public boolean op(Student s) {
 return s.gradYear == 2010;

 }
 }).map(new Extractor<Student,Double>() {
 public Double extract(Student s) {

 return s.score;
 }

 }).max();

42

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Collection<Student> students = ...;

ddouble max = students.filter(new Predicate<Student>() {
 public boolean op(Student s) {
 return s.gradYear == 2010;

 }
 }).map(new Extractor<Student,Double>() {
 public Double extract(Student s) {

 return s.score;
 }

 }).max();

 // Lambda expressions

 s -> s.score }) Student
 Student

double max =
 students.filter(#{

 .map(#{
 .max();

 s -> s.gradYear == 2010 })

42

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Inner classes are imperfect closures

• Bulky syntax
• Can’t capture non-final local variables
• Transparency issues: meaning of return, break, continue, this
• No non-local control flow operators

43

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Single Abstract Method (SAM) Types

public interface CallbackHandler {

 // single abstract method
 public void callback(Context c);

}

• Lots of examples in the Java SE APIs
– Runnable, Callable, EventHandler, Comparator...

44

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Single Abstract Method (SAM) Types

foo.doSomething(new CallbackHandler() {
 public void callback(Context c) {

 System.out.println("callback");
 }
 });

• Noise:Work = 5:1
• Lambda grows out of the idea of making callback objects
easier

45

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Single Abstract Method (SAM) Types

A Lambda expression with one parameter, one statement
statement list block, void return type, no checked exceptions

46

foo.doSomething(new CallbackHandler() {
 public void callback(Context c) {

 System.out.println("callback");
 }
 });

// with Lambda
foo.doSomething(

#{ Context c -> System.out.println("pippo") };
);

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

More examples

#{ Context c -> System.out.println("pippo") };

#{ -> 42 }

#{ int x -> x + 1 }

47

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Target Typing

CallBackHandler cb = #{ Context c -> System.out.println("pippo") };

Runnable r = #{ System.out.println("Running") };
Runnable r = (Runnable) #{ System.out.println("Running") };
executor.submit(#{ System.out.println("Running") });

Rule #1: Only in a context where it can be converted to a SAM type

48

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Lambda Bodies

Rule #2: A list of statements just like in a method body, except no break or
continue at the top level. The return type is inferred from the unification of the
returns from the set of return statements

Rule #3: ‘this’ has the same value as ‘this’ immediately outside the Lambda
expression

Rule #4: Lambdas can use ‘effectively final’ variables as well as final variables.

49

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.Copyright © 2010 Oracle and/or its affiliates. All rights reserved.

Collection<Student> students = ...;

50

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.Copyright © 2010 Oracle and/or its affiliates. All rights reserved.

Collection<Student> students = ...;

50

 // Lambda expressions

 s -> s.score }) Student
 Student

double max =
 students.filter(#{

 .map(#{
 .max();

 s -> s.gradYear == 2010 })

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Extending Interfaces

public interface Set<T> extends Collection<T> {

 public int size();

...

 // The rest of the existing Set methods
 public extension T reduce(Reducer<T> r)
 default Collections.<T>setReducer;
}

51

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Extending Interfaces

public interface Set<T> extends Collection<T> {

 public int size();

...

 // The rest of the existing Set methods
 public extension T reduce(Reducer<T> r)
 default Collections.<T>setReducer;
}

tells us this
method extends

the interface

51

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Extending Interfaces

public interface Set<T> extends Collection<T> {

 public int size();

...

 // The rest of the existing Set methods
 public extension T reduce(Reducer<T> r)
 default Collections.<T>setReducer;
}

tells us this
method extends

the interface

Implementation to use if none
exists for the implementing class

51

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Collection<Student> students = ...;

 // Lambda expressions

 s -> s.score })

double max =
students.filter(#{
 .map(#{
 .max();

 s -> s.gradYear == 2010 })

52

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Collection<Student> students = ...;

 // Lambda expressions

 s -> s.score })

double max =
students.filter(#{
 .map(#{
 .max();

 s -> s.gradYear == 2010 })

interface Collection<T> {
 int add(T t);
 int size();
 void clear();
 ...
}

52

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Collection<Student> students = ...;

 // Lambda expressions

 s -> s.score })

double max =
students.filter(#{
 .map(#{
 .max();

 s -> s.gradYear == 2010 })

53

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Collection<Student> students = ...;

 // Default methods

 extension Collection<E> filter(Predicate<T> p)
 default Collections.<T>filter;

 extension <V> Collection<V> map(Extractor<T,V> e)
 default Collections.<T>map;

 extension <V> V max()
 default Collections.<V>max;

interface Collection<T> {

}

 // Lambda expressions

 s -> s.score })

double max =
students.filter(#{
 .map(#{
 .max();

 s -> s.gradYear == 2010 })

53

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
54

Language futures: Collection Literals
final List<Integer> piDigits = Collections.unmodifiableList(
 Arrays.asList(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9));

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
54

Language futures: Collection Literals
final List<Integer> piDigits = Collections.unmodifiableList(
 Arrays.asList(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9));

final List<Integer> piDigits = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9];

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
54

Language futures: Collection Literals
final List<Integer> piDigits = Collections.unmodifiableList(
 Arrays.asList(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9));

final List<Integer> piDigits = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9];

final Set<Integer> primes = { 2, 7, 31, 127, 8191, 131071, 524287 };

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
54

Language futures: Collection Literals
final List<Integer> piDigits = Collections.unmodifiableList(
 Arrays.asList(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9));

final List<Integer> piDigits = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9];

final Set<Integer> primes = { 2, 7, 31, 127, 8191, 131071, 524287 };

Set<Senator> honestPoliticians = {};

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
55

Language futures: Collection Literals
final Map<Integer, String> platonicSolids;
 static {
 Map<Integer, String> solids =
 new LinkedHashMap<Integer, String>();
 solids.put(4, "tetrahedron");
 solids.put(6, "cube");
 solids.put(8, "octahedron");
 solids.put(12, "dodecahedron");
 solids.put(20, "icosahedron");
 platonicSolids = Collections.immutableMap(solids);
 }

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

}

55

Language futures: Collection Literals
final Map<Integer, String> platonicSolids;
 static {
 Map<Integer, String> solids =
 new LinkedHashMap<Integer, String>();
 solids.put(4, "tetrahedron");
 solids.put(6, "cube");
 solids.put(8, "octahedron");
 solids.put(12, "dodecahedron");
 solids.put(20, "icosahedron");
 platonicSolids = Collections.immutableMap(solids);
 }

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

}

55

Language futures: Collection Literals
final Map<Integer, String> platonicSolids;
 static {
 Map<Integer, String> solids =
 new LinkedHashMap<Integer, String>();
 solids.put(4, "tetrahedron");
 solids.put(6, "cube");
 solids.put(8, "octahedron");
 solids.put(12, "dodecahedron");
 solids.put(20, "icosahedron");
 platonicSolids = Collections.immutableMap(solids);
 }

final Map<Integer, String> platonicSolids = {
 4 : "tetrahedron",
 6 : "cube",
 8 : "octahedron",
 12 : "dodecahedron",
 20 : "icosahedron"
};

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

1.4 5.0 6
2002 2004 2006 2011 2012

7 8
56

2015...

Fork/Join Framework

Lambdas
Concurrent collections

Parallel Programming

java.lang.Thread

java.util.concurrent Automatic
parellization

?

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

1.0
1.1

1.2
1.31.4

5.0

6
1996 1997 1998 2000 2002 2004 2006 2010 2011 2012

78
57

2015

...
...

Multiple JVM languages
Parallel programming

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
58

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

7InvokeDynamic (JSR 292)

Fork/Join Framework

Project Coin (JSR 334)

Strict Verification

Parallel Class Loaders

Transfer Queues
Phasers

Unicode 6.0
Swing Nimbus

XRender Pipeline

ECC
Swing JLayerMore New I/O (JSR 203)

JDBC 4.1

TLS 1.2

Enhanced Locales
SDP & SCTP

Mid 2011

58

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

7
Project Jigsaw

InvokeDynamic (JSR 292)

Fork/Join Framework

Project Coin (JSR 334)

Strict Verification

Parallel Class Loaders

Type Annotations (JSR 308)Transfer Queues
Phasers Bulk-Data Operations

Unicode 6.0
Swing Nimbus

XRender Pipeline

ECC
Swing JLayerMore New I/O (JSR 203)

JDBC 4.1

TLS 1.2

Swing JDatePicker

Enhanced Locales
SDP & SCTP

Project Lambda (JSR 335)

8
Late 2012Mid 2011

Collection Literals

58

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
59

