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The following is intended to outline our general product 
direction. It is intended for information purposes only, 
and may not be incorporated into any contract. It is not a 
commitment to deliver any material, code, or functionality, 
and should not be relied upon in making purchasing 
decisions.
The development, release, and timing of any features or 
functionality described for Oracle’s products remains at the 
sole discretion of Oracle.
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Java VM Specification, 1997
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Java VM Specification, 1997

• The Java Virtual Machine knows nothing about the Java programming language, only of a 
particular binary format, the class file format.

• A class file contains Java Virtual Machine instructions (or bytecodes) and a symbol table, 
as well as other ancillary information.

• Any language with functionality that can be expressed in terms of a valid class file can be 
hosted by the Java virtual machine.

• Attracted by a generally available, machine-independent platform, implementors of other 
languages are turning to the Java Virtual Machine as a delivery vehicle for their languages.

• In the future, we will consider bounded extensions to the Java Virtual Machine to provide 
better support for other languages.
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Trends in programming languages
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    ScriptEngineManager m = new ScriptEngineManager();
    ScriptEngine jsEngine = m.getEngineByName("js");

import javax.script.*

Scripting on Java SE 6 Platform
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    ScriptEngineManager m = new ScriptEngineManager();
    ScriptEngine jsEngine = m.getEngineByName("js");

    jsEngine.eval("print('Hello, world!')");

import javax.script.*

Scripting on Java SE 6 Platform
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    ScriptEngineManager m = new ScriptEngineManager();
    ScriptEngine jsEngine = m.getEngineByName("js");

    InputStream is = this.getClass().getResourceAsStream("/scripts/hello.js");
    Reader reader = new InputStreamReader(is);
    jsEngine.eval(reader);

import javax.script.*

Scripting on Java SE 6 Platform
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    ScriptEngineManager m = new ScriptEngineManager();
    ScriptEngine jsEngine = m.getEngineByName("js");

    jsEngine.eval("function sayHello() {" +
                "  println('Hello, world!');" +
                "}");

    Invocable invocableEngine = (Invocable) jsEngine;
    invocableEngine.invokeFunction("sayHello");

import javax.script.*

Scripting on Java SE 6 Platform
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Languages ♥ Virtual Machines

• Programming languages need runtime support
– Memory management / Garbage collection
– Concurrency control
– Security
– Reflection
– Debugging / Profiling
– Standard libraries (collections, database, XML, etc)

• Traditionally, language implementers coded these themselves
• Many implementers now choose to target a VM to reuse 

infrastructure

11
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“Java is fast because it runs on a VM”

•  Major breakthrough was the advent of “Just In Time” 
compilers [fast]
– Compile from bytecode to machine code at runtime
– Optimize using information available at runtime only

•  Simplifies static compilers
– javac and ecj generate “dumb” bytecode and 

trust the JVM to optimize
– Optimization is real, but invisible

12
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Optimizations apply (more or less) to all languages

• Optimizations work on bytecode in .class files
• A compiler for any language – not just Java – can emit 
a .class file
• All languages can benefit from dynamic compilation and 
optimizations like inlining
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HotSpot optimizations

14
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loop transformations
   loop unrolling
   loop peeling
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   iteration range splitting
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   loop vectorization
global code shaping
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   global code motion
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Inlining: Example

15
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public interface FooHolder<T> {
    public T getFoo();
}
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public interface FooHolder<T> {
    public T getFoo();
}

    

public class MyHolder<T> implements FooHolder<T> {
   private final T foo;

   public MyHolder(T foo32) {
      this.foo = foo; 
   }

   public T getFoo() { 
      return foo;
   }
}

    

Inlining: Example
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   public interface FooHolder<T> {

    public T getFoo();

 }

 public class MyHolder<T> 

           implements FooHolder<T> {

    private final T foo;

    public MyHolder(T foo) { this.foo = foo; }

    public T getFoo() { return foo; }

 }

   

Inlining: Example

Inlining: Example
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   public interface FooHolder<T> {

    public T getFoo();

 }

 public class MyHolder<T> 

           implements FooHolder<T> {

    private final T foo;

    public MyHolder(T foo) { this.foo = foo; }

    public T getFoo() { return foo; }

 }

   

Inlining: Example

 public String getString(FooHolder<String> holder) {
   if (holder == null)
      throw new NullPointerException("You dummy.");
   else
      return holder.getFoo();
}

Inlining: Example
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   return getString(myFooHolder);
}
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   public interface FooHolder<T> {

    public T getFoo();

 }

 public class MyHolder<T> 

           implements FooHolder<T> {

    private final T foo;

    public MyHolder(T foo) { this.foo = foo; }

    public T getFoo() { return foo; }

 }

   

Inlining: Example

 public String getString(FooHolder<String> holder) {
   if (holder == null)
      throw new NullPointerException("You dummy.");
   else
      return holder.getFoo();
}

Step 1 
Inline getString() call

...
public String foo(String x) {
   FooHolder<String> myFooHolder = new MyHolder<String>(x);
   return getString(myFooHolder);
}

Inlining: Example
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   public interface FooHolder<T> {
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 }
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 public String getString(FooHolder<String> holder) {
   if (holder == null)
      throw new NullPointerException("You dummy.");
   else
      return holder.getFoo();
}

...
public String foo(String x) {
   FooHolder<String> myFooHolder = new MyHolder<String>(x);
   if (myFooHolder == null)
      throw new NullPointerException("You dummy.");
   else
      return myFooHolder.getFoo();
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Inlining: Example
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   public interface FooHolder<T> {

    public T getFoo();

 }

 public class MyHolder<T> 

           implements FooHolder<T> {

    private final T foo;

    public MyHolder(T foo) { this.foo = foo; }

    public T getFoo() { return foo; }

 }

   

Inlining: Example

 public String getString(FooHolder<String> holder) {
   if (holder == null)
      throw new NullPointerException("You dummy.");
   else
      return holder.getFoo();
}

...
public String foo(String x) {
   FooHolder<String> myFooHolder = new MyHolder<String>(x);
   if (myFooHolder == null)
      throw new NullPointerException("You dummy.");
   else
      return myFooHolder.getFoo();
}

Step 2 
Dead code elimination

Inlining: Example
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   public interface FooHolder<T> {

    public T getFoo();

 }

 public class MyHolder<T> 

           implements FooHolder<T> {

    private final T foo;

    public MyHolder(T foo) { this.foo = foo; }

    public T getFoo() { return foo; }

 }

   

Inlining: Example

 public String getString(FooHolder<String> holder) {
   if (holder == null)
      throw new NullPointerException("You dummy.");
   else
      return holder.getFoo();
}

...
public String foo(String x) {
   FooHolder<String> myFooHolder = new MyHolder<String>(x);
   return myFooHolder.getFoo();
}

Inlining: Example
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Inlining: Example

 public String getString(FooHolder<String> holder) {
   if (holder == null)
      throw new NullPointerException("You dummy.");
   else
      return holder.getFoo();
}

...
public String foo(String x) {
   FooHolder<String> myFooHolder = new MyHolder<String>(x);
   return myFooHolder.getFoo();
}

Step 3 
Type sharp and inline

   public interface FooHolder<T> {

    public T getFoo();

 }

 public class MyHolder<T> 

           implements FooHolder<T> {

    private final T foo;

    public MyHolder(T foo) { this.foo = foo; }

    public T getFoo() { return foo; }
 }

   

Inlining: Example
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   public interface FooHolder<T> {

    public T getFoo();

 }

 public class MyHolder<T> 

           implements FooHolder<T> {

    private final T foo;

    public MyHolder(T foo) { this.foo = foo; }

    public T getFoo() { return foo; }

 }

   

Inlining: Example

 public String getString(FooHolder<String> holder) {
   if (holder == null)
      throw new NullPointerException("You dummy.");
   else
      return holder.getFoo();
}

...
public String foo(String x) {
   FooHolder<String> myFooHolder = new MyHolder<String>(x);
   return myFooHolder.foo;
}

Inlining: Example
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Inlining: Example

 public String getString(FooHolder<String> holder) {
   if (holder == null)
      throw new NullPointerException("You dummy.");
   else
      return holder.getFoo();
}

...
public String foo(String x) {
   FooHolder<String> myFooHolder = new MyHolder<String>(x);
   return myFooHolder.foo;
}

Step 4 
Escape analysis and 
scalar replacement

   public interface FooHolder<T> {

    public T getFoo();

 }

 public class MyHolder<T> 

           implements FooHolder<T> {

    private final T foo;

    public MyHolder(T foo) { this.foo = foo; }

    public T getFoo() { return foo; }

 }

   

Inlining: Example
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   public interface FooHolder<T> {

    public T getFoo();

 }

 public class MyHolder<T> 

           implements FooHolder<T> {

    private final T foo;

    public MyHolder(T foo) { this.foo = foo; }

    public T getFoo() { return foo; }

 }

   

Inlining: Example

 public String getString(FooHolder<String> holder) {
   if (holder == null)
      throw new NullPointerException("You dummy.");
   else
      return holder.getFoo();
}

...
public String foo(String x) {
   return x;
}

Inlining: Example
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   public interface FooHolder<T> {

    public T getFoo();

 }

 public class MyHolder<T> 

           implements FooHolder<T> {

    private final T foo;

    public MyHolder(T foo) { this.foo = foo; }

    public T getFoo() { return foo; }

 }

   

Inlining: Example

 public String getString(FooHolder<String> holder) {
   if (holder == null)
      throw new NullPointerException("You dummy.");
   else
      return holder.getFoo();
}

...
public String foo(String x) {
   return x;
}

public String foo(String x) {
   FooHolder<String> myFooHolder = new MyHolder<String>(x);
   return getString(myFooHolder);
} ✘

Inlining: Example
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Different kinds of languages
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If we could make one change to the JVM 
to improve life for dynamic languages, 
what would it be?
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If we could make one change to the JVM 
to improve life for dynamic languages, 
what would it be?

More flexible method calls
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More flexible method calls

•  The invokevirtual bytecode performs a method call
•  Its behavior is Java-like and fixed
•  Other languages need custom behavior
•  Idea: let some “language logic” determine the behavior 

of a JVM method call
•  Invention: the invokedynamic bytecode

– VM asks some “language logic” how to call a method
– Language logic gives an answer, and decides if it needs to stay 

in the loop

23
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What’s next?  Da Vinci projects

• The Da Vinci Machine Project continues
• Community contributions:

– Continuations
– Coroutines
– Hotswap
– Tailcalls
– Interface injection

• Gleams in our eyes:
– Object “species” (for splitting classes more finely)
– Tuples and value types (for using registers more efficiently)
– Advanced array types (for using memory more efficiently)
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Raise the speed limit ?

26

Traffic Jams
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The rise of multi-core/
multi-processor architectures

Traffic Jams
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Multi-core, Multi Processor Servers
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Niagara 1 (2005)

8 x 4 = 32
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Copyright © 2011 Oracle and/or its affiliates.  All rights reserved.

Niagara 1 (2005)

8 x 4 = 32

Niagara 2 (2007)

8 x 8 = 64

27

Multi-core, Multi Processor Servers
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Niagara 1 (2005)

8 x 4 = 32

Niagara 2 (2007)

8 x 8 = 64

Rainbow Falls (Now)
16 x 8 = 128

27

Multi-core, Multi Processor Servers
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Parallel Programming

29

• The runtime only has a partial 
view of how to optimize your 
application
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Parallel Programming

29

• The runtime only has a partial 
view of how to optimize your 
application

• It needs your help so it knows 
how to parallelize your application
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Concurrency APIs for developers: JDK 1.5

30

• Originally developed for JDK 1.5
• Result of work of JSR 166
• API level toolkit for concurrent programming

- Locks
- Threadpools
- Blocking queues

• Found in java.util.concurrent.*
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Concept of Fork/Join Framework

31
Image: Gareth Jones
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Concept of Fork/Join Framework
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Basic Idea

if (my portion of the work is small enough) {
  do the work directly
} else {
  split my work into two pieces
  invoke the two pieces and wait for the results
}

32
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Fork Join Framework API

• java.util.concurrent.ForkJoinPool
• Special class for managing tasks that will execute in parallel
• Submit new tasks
• Manage lifecycle of tasks
• Monitor task execution

• java.util.concurrent.ForkJoinTask
• Abstract base class encapsulating task to run concurrently
• Like a lightweight thread
• Typically use RecursiveTask or RecursiveAction

33
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Example: Blurring an image

public class ForkBlur {
     private int[] mSource;
     private int mStart;
     private int mLength;
     private int[] mDestination;
  
     private int mBlurWidth = 15; // Processing window size, should be odd.
  
     public ForkBlur(int[] src, int start, int length, int[] dst) {
        mSource = src;
        mStart = start;
        mLength = length;
        mDestination = dst;
     }

     ...

34
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public class ForkBlur {

     ...
         // this is the heavy lifting
      protected void computeDirectly() {
         int sidePixels = (mBlurWidth - 1) / 2;
         for (int index = mStart; index < mStart + mLength; index++) {
            // Calculate average.
            float rt = 0, gt = 0, bt = 0;
            for (int mi = -sidePixels; mi <= sidePixels; mi++) {
               int mindex = Math.min(Math.max(mi + index, 0), mSource.length - 1);
               int pixel = mSource[mindex];
               rt += (float)((pixel & 0x00ff0000) >> 16) / mBlurWidth;
               gt += (float)((pixel & 0x0000ff00) >>  8) / mBlurWidth;
               bt += (float)((pixel & 0x000000ff) >>  0) / mBlurWidth;
         }
      
         // Re-assemble destination pixel.
         int dpixel = (0xff000000     ) |
                   (((int)rt) << 16) |
                   (((int)gt) <<  8) |
                   (((int)bt) <<  0);
         mDestination[index] = dpixel;
      }

      ...

  }
35

Example: Blurring an image
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Heavy lifting in parallel using Fork/Join

public class ForkBlur extends RecursiveAction {

  protected void compute() {
  // use the Fork/Join pattern here

  }
     ...

      protected void computeDirectly() {
         // this is still the heavy lifting
         
      }

      ...

  }

36
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Basic concept of Fork/Join

if (my portion of the work is small enough) {
  do the work directly
} else {
  split my work into two pieces
  invoke the two pieces and wait for the results
}

37
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Application of Fork/Join

protected static int sThreshold = 100000;

protected void compute() {

   // is my portion of the work is small enough ?
   if (mLength < sThreshold) {

     // just do it
     computeDirectly();
     return;
   } else {

     // split my work into two pieces
     int split = mLength / 2;
    
     invokeAll(
   new ForkBlur(mSource, mStart, split, mDestination),

       new ForkBlur(mSource, mStart + split, mLength - split, mDestination)
    );

   }
}

38



Copyright © 2011 Oracle and/or its affiliates.  All rights reserved.

Running the code

// source image pixels are in src
// destination image pixels are in dst
ForkBlur fb = new ForkBlur(src, 0, src.length, dst);

ForkJoinPool pool = new ForkJoinPool();

// now the work can be executed in parallel
pool.invoke(fb);
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Parallel Programming in Java today

40

Ease Supported by

Possible but very tricky Thread API

Well-supported for specialized 
purposes Concurrency APIs with Fork/Join

Commonplace Not yet...
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class Student {    
   String name;    
   int gradYear;    
   double score;
}

41
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class Student {    
   String name;    
   int gradYear;    
   double score;
}

Collection<Student> students = ...;
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Collection<Student> students = ...;

42
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Collection<Student> students = ...;

double max = Double.MIN_VALUE;
for (Student s : students) {
    if (s.gradYear == 2010)
        max = Math.max(max, s.score);
}
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Collection<Student> students = ...;

double max = students.filter(new Predicate<Student>() {
                public boolean op(Student s) {
                   return s.gradYear == 2010;

                }
             }).map(new Extractor<Student,Double>() {
                public Double extract(Student s) {

                   return s.score;
                }

             }).max();
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Collection<Student> students = ...;

ddouble max = students.filter(new Predicate<Student>() {
                public boolean op(Student s) {
                   return s.gradYear == 2010;

                }
             }).map(new Extractor<Student,Double>() {
                public Double extract(Student s) {

                   return s.score;
                }

             }).max();

                      // Lambda expressions

 s -> s.score }) Student
 Student

double max = 
   students.filter(  #{

         .map(#{
              .max();

 s -> s.gradYear == 2010 })
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Inner classes are imperfect closures

• Bulky syntax
• Can’t capture non-final local variables
• Transparency issues: meaning of return, break, continue, this
• No non-local control flow operators

43
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Single Abstract Method (SAM) Types

public interface CallbackHandler {

       // single abstract method
    public void callback(Context c);

}

• Lots of examples in the Java SE APIs
– Runnable, Callable, EventHandler, Comparator...
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Single Abstract Method (SAM) Types

foo.doSomething(new CallbackHandler() { 
    public void callback(Context c) { 

                 System.out.println("callback");
                 }
              });
 

• Noise:Work = 5:1
• Lambda grows out of the idea of making callback objects 
easier
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Single Abstract Method (SAM) Types

A Lambda expression with one parameter, one statement 
statement list block, void return type, no checked exceptions

46

foo.doSomething(new CallbackHandler() { 
    public void callback(Context c) { 

                 System.out.println("callback");
                 }
              });

// with Lambda
foo.doSomething(

#{ Context c -> System.out.println("pippo") };
 );
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More examples

#{ Context c -> System.out.println("pippo") };

#{ -> 42 }

#{ int x -> x + 1 }

47
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Target Typing

CallBackHandler cb = #{ Context c -> System.out.println("pippo") };

Runnable r = #{ System.out.println("Running") };
Runnable r = (Runnable) #{ System.out.println("Running") };
executor.submit( #{ System.out.println("Running") } );

Rule #1: Only in a context where it can be converted to a SAM type
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Lambda Bodies

Rule #2: A list of statements just like in a method body, except no break or 
continue at the top level. The return type is inferred from the unification of the 
returns from the set of return statements

Rule #3: ‘this’ has the same value as ‘this’ immediately outside the Lambda 
expression

Rule #4: Lambdas can use ‘effectively final’ variables as well as final variables.
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Collection<Student> students = ...;
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Collection<Student> students = ...;

50

                      // Lambda expressions

 s -> s.score }) Student
 Student

double max = 
   students.filter(  #{

         .map(#{
              .max();

 s -> s.gradYear == 2010 })
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Extending Interfaces

public interface Set<T> extends Collection<T> {

   public int size();

...

 
     // The rest of the existing Set methods
   public extension T reduce(Reducer<T> r)
     default Collections.<T>setReducer;
}
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Extending Interfaces

public interface Set<T> extends Collection<T> {

   public int size();

...

 
     // The rest of the existing Set methods
   public extension T reduce(Reducer<T> r)
     default Collections.<T>setReducer;
}

tells us this 
method extends 

the interface
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Extending Interfaces

public interface Set<T> extends Collection<T> {

   public int size();

...

 
     // The rest of the existing Set methods
   public extension T reduce(Reducer<T> r)
     default Collections.<T>setReducer;
}

tells us this 
method extends 

the interface

Implementation to use if  none 
exists for the implementing class
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Collection<Student> students = ...;

                      // Lambda expressions

 s -> s.score })

double max    =     
students.filter(      #{
              .map(   #{
              .max();

 s -> s.gradYear == 2010 })
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Collection<Student> students = ...;

                      // Lambda expressions

 s -> s.score })

double max    =     
students.filter(      #{
              .map(   #{
              .max();

 s -> s.gradYear == 2010 })

interface Collection<T> {
   int add(T t);
   int size();
   void clear();
   ...
}

52
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Collection<Student> students = ...;

                      // Lambda expressions

 s -> s.score })

double max    = 
students.filter(      #{
              .map(   #{
              .max();

 s -> s.gradYear == 2010 })
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Collection<Student> students = ...;

                             // Default methods

    extension Collection<E> filter(Predicate<T> p)
        default Collections.<T>filter;

    extension <V> Collection<V> map(Extractor<T,V> e)
        default Collections.<T>map;

    extension <V> V max()
        default Collections.<V>max;

interface Collection<T> {

}

                      // Lambda expressions

 s -> s.score })

double max    = 
students.filter(      #{
              .map(   #{
              .max();

 s -> s.gradYear == 2010 })
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Language futures: Collection Literals
final List<Integer> piDigits = Collections.unmodifiableList( 
                 Arrays.asList(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9 ));
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Language futures: Collection Literals
final List<Integer> piDigits = Collections.unmodifiableList( 
                 Arrays.asList(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9 ));

final List<Integer> piDigits = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9];
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Language futures: Collection Literals
final List<Integer> piDigits = Collections.unmodifiableList( 
                 Arrays.asList(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9 ));

final List<Integer> piDigits = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9];

final Set<Integer> primes = { 2, 7, 31, 127, 8191, 131071, 524287 };
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Language futures: Collection Literals
final List<Integer> piDigits = Collections.unmodifiableList( 
                 Arrays.asList(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9 ));

final List<Integer> piDigits = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9];

final Set<Integer> primes = { 2, 7, 31, 127, 8191, 131071, 524287 };

Set<Senator> honestPoliticians = {};
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Language futures: Collection Literals
final Map<Integer, String> platonicSolids;
    static {
        Map<Integer, String> solids = 
                               new LinkedHashMap<Integer, String>();
        solids.put(4,  "tetrahedron");
        solids.put(6,  "cube");
        solids.put(8,  "octahedron");
        solids.put(12, "dodecahedron");
        solids.put(20, "icosahedron");
        platonicSolids = Collections.immutableMap(solids);
    }
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}

55

Language futures: Collection Literals
final Map<Integer, String> platonicSolids;
    static {
        Map<Integer, String> solids = 
                               new LinkedHashMap<Integer, String>();
        solids.put(4,  "tetrahedron");
        solids.put(6,  "cube");
        solids.put(8,  "octahedron");
        solids.put(12, "dodecahedron");
        solids.put(20, "icosahedron");
        platonicSolids = Collections.immutableMap(solids);
    }
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}

55

Language futures: Collection Literals
final Map<Integer, String> platonicSolids;
    static {
        Map<Integer, String> solids = 
                               new LinkedHashMap<Integer, String>();
        solids.put(4,  "tetrahedron");
        solids.put(6,  "cube");
        solids.put(8,  "octahedron");
        solids.put(12, "dodecahedron");
        solids.put(20, "icosahedron");
        platonicSolids = Collections.immutableMap(solids);
    }
    

final Map<Integer, String> platonicSolids = {
                                              4 : "tetrahedron",
                                              6 : "cube", 
                                              8 : "octahedron", 
                                              12 : "dodecahedron", 
                                              20 : "icosahedron"
};
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7InvokeDynamic (JSR 292)

Fork/Join Framework

Project Coin (JSR 334)

Strict Verification

Parallel Class Loaders

Transfer Queues
Phasers

Unicode 6.0
Swing Nimbus

XRender Pipeline

ECC
Swing JLayerMore New I/O (JSR 203)

JDBC 4.1

TLS 1.2

Enhanced Locales
SDP & SCTP

Mid 2011
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7
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