
SQL to NoSQL

Lessons learnt migrating a large and
highly-relational database into a
"classic" NoSQL

Enda Farrell @endafarrell

“It’s not you, it’s me …”

This doesn’t apply to you
… possibly … probably …

2

Here’s what’s coming

What
Why
Complexity
People
Tools
Data

3

Lessons

What is this service?

Nokia’s “Ovi Places Registry” aims to be
the largest validated point of interest
repository in the world

4

What kind of data?

Names
Categories
Tags
Location information

longitude and latitude
postal address

Contact data

5

6

7

What about it is large and highly relational?

10s of millions points of interest
Many many 100s of millions of
contributing records
MySQL DB is 600 GB on disk
32 tables, 202 columns
46 non-PRIMARY constraints

8

What usage patterns do you have?

9

“Classic” NoSQL? What did you use?

It isn’t CouchDB but a variation of a Nokia
internal one
It’s a Key Value store holding JSON

Without the key you cannot access the value
It isn’t a “document store” as the store does
nothing with the structure

10

Why did you port this to NoSQL?

bigger and bigger
Nokia maps – web and phone
Yahoo! and soon Bing, => Facebook
Postponed sharding by bigger HDD
We learnt a lot over the last 3 years

11

Why did you port this to NoSQL? (continued)

SQL databases can be rigid
The world is a messy place
“State field”?
Integrating other organisations’ data

12

Complicated?

The SQL and NoSQL databases will need
to run in parallel for some time
Ops & Disk space
Truth or System of Record
Reconciliation
Syncronisation
Querying

13

Complicated Ops & disk

Releases, QA, staging and live
deployments are more complex when
there are two concurrent data storage
systems
What assumptions are other people
making?
2 x HDD

14

Complicated truth

When the two systems disagree, which
one is “right”?

15

Complicated reconciliation

How do you know that your two data
stores disagree?

Do you check each on on each read/write,
or do you have some “batch” code to
check equivalence?

Top tip: build a batch reconciler to check
keys and revision/etags

you _do_ have etags don’t you?!
16

Complicated synchronisation

Have you ever tried to keep two different
calendars synchronised?
Ever get two email clients telling you you
have different numbers of unread mail for
the same email account?

17

Complicated querying

KV stores generally don’t do querying
Some NoSQL stores allow some, but
usually more restricted than SQL
We used Solr for performance even
though it isn’t as powerful as SQL
The synchronisation complexity is here to
stay for us

18

Complexity

Complexity is often mistaken for
“cleverness”

19

Lessons learnt: people

Why.

It’s a question you will be asked and you
will have to answer

20

Lesson learnt: people

 The “DB~A” role is still needed

Here the “~A” is more to do with data/
information architecture than with
administration

 Top tip: design your JSON. Print it out.

21

Lesson learnt: people

The effect on your team
You may have a team of enterprise Java-
types who are used to writing Eclipse-
enabled code
In our case we wanted to keep the flexibility
that JSON gives us, but it meant we no
longer had the same sort of model objects

22

Lessons learnt: tools

Build “SQL to NoSQL” and “NoSQL to
SQL” seeders

You will need to seed your NoSQL from
your SQL. You probably have existing
DAOs which can form the basis – but this
assumes your entities are essentially the
same (top tip: keep them so!)

23

Lessons learnt: tools

Build “SQL to NoSQL” and “NoSQL to
SQL” seeders

“NoSQL to SQL” was a seeder we learnt
the hard way.

24

Lessons learnt: tools

What’s your unit/integration test
coverage?

 5 releases post initial launch, is your test
data still exercising all code paths?

25

Lesson learnt: tools

You may find that not everything fits into a
Key Value engine

Even with a queryable index, some data sets
really are relational ;-)
The down-side is that you may therefore
have to keep long term the SQL database

26

Lesson learnt: tools

Visualise your system
Monitoring: calls, load, response times
Volumetrics: num docs, HDD, milestones
Context: draw a systems context diagram
 (which reminds me …)

27

Lesson learnt: data

Key generation – it’s not sequence
numbers nor “auto-increments” anymore

Many are UUIDs and they are long and
ugly

 But “guess and check” is ugly too
 Consistent hash?

28

Lesson learnt: data

Make the revision/etag of the JSON data
visible in the JSON

Not just in a header (assuming HTTP here)
The data will be taken off-platform, if you
want to change it you will need to know that
the revision is (or is not) still the same

29

Lesson learnt: data

Version of the JSON “schema” in the KV
You have many docs
You might have to “upgrade” the structure of
the KV doc
Keep the schema version in the JSON

30

Lesson learnt: data

Many little not few big?
Easier to replicate
“Big” docs can be tough on networks
Trade-off with more client calls (esp error
handling)

31

Probably good ideas
If you’re _thinking_ about doing this, do
use one of the open source ones

Get one that replicates easily

Build POCs

32

Thank you!
Other questions?
@endafarrell
http://endafarrell.net

