
Craft and
Software Engineering

Glenn Vanderburg
InfoEther

glenn@infoether.com
@glv

Software Engineering,
Software Craftsmanship

Management
vs.

Programmers?

A Caricature of
Engineering

1. A software system can best be
designed if the testing is
interlaced with the designing
instead of being used after the
design.

2. A simulation which matches the
requirements contains the
control which organizes the
design of the system.

3. Through successive repetitions
of this process of interlaced
testing and design the model
ultimately becomes the software
system itself. [...] in effect
the testing and the replacement
of simulations with modules that
are deeper and more detailed
goes on with the simulation
model controlling, as it were,
the place and order in which
these things are done.

Unlike the first conference, at which it
was fully accepted that the term

software engineering expressed a need
rather than a reality, in Rome there was

already a slight tendency to talk as if
the subject already existed.

And it became clear during the
conference that the organizers had a

hidden agenda, namely that of
persuading NATO to fund the setting

up of an International Software
Engineering Institute.

However things did not go according to
their plan. The discussion sessions

which were meant to provide evidence
of strong and extensive support for this

proposal were instead marked by
considerable scepticism, and led one of
the participants, Tom Simpson of IBM,

to write a splendid short satire on
“Masterpiece Engineering”.

It was little surprise to any of the
participants in the Rome conference

that no attempt was made to continue
the NATO conference series, but the

software engineering bandwagon began
to roll as many people started to use

the term to describe their work, to my
mind often with very little justification.

—Brian Rande"

“Premature maturity”

[Programming] is not some kind of
engineering where all we have to do
is put something in one end and
turn the crank.

—Bruce Eckel

“A Rational Design
Process”

A. Establish and document requirements

B. Design and document the module
structure

C. Design and document the module
interfaces

D. Design and document the uses hierarchy

E. Design and document the module internal
structures

F. Write programs

G. Maintain

The conversion of an idea to an
artifact, which engages both the

designer and the maker, is a complex
and subtle process that will always be

far closer to art than to science.
(Eugene S. Ferguson,

Engineering and the Mind’s Eye)

In engineering ... people design
through documentation.

—David Parnas

Although the drawings appear to be
exact and unequivocal, their precision

conceals many informal choices,
inarticulate judgments, acts of

intuition, and assumptions about the
way the world works.

(Eugene S. Ferguson,
Engineering and the Mind’s Eye)

The defined process control
model requires that every
piece of work be completely
understood. A defined
process can be started and
allowed to run until
completion, with the same
results every time.

The empirical process control model
provides and exercises control

through frequent inspection and
adaptation for processes that
are imperfectly defined and
generate unpredictable and

unrepeatable outputs.

Aeroplanes are not designed by science,
but by art, in spite of some pretence

and humbug to the contrary. […]

There is a big gap between scientific
research and the engineering product

which has to be bridged by
the art of the engineer.

—J. D. North

“You don’t know
it’s right if you
don’t have the
math to prove it.”

Structural analyses (indeed, any
engineering calculations) must be

employed with caution and judgment,
because mathematical models are
always less complex than actual

structures, processes, or machines.
(Eugene S. Ferguson,

Engineering and the Mind’s Eye)

Engineering is not the art
of constructing. It is rather
the art of not constructing:
or, it is the art of doing well

with one dollar what any
bungler can do with two.
—Arthur Me"en We"ington

Mathematical modeling
was introduced as a
cost-saving measure.

Engineering is the art of
directing the great sources of
power in nature for the use
and convenience of man.
—Institution of Civil Engineers

Structural engineering is
the science and art

of designing and making,
with economy and elegance,
[…] structures so that they

can safely resist the forces to
which they may be subjected.
—Structural Engineer’s Association

Different Engineering
Disciplines are Different

• Different materials, physical effects, forces

• Different degrees of complexity in
requirements, designs, processes, and artifacts

• Varied reliance on formal modeling and analysis
vs. experimentation, prototyping, and testing

• Varied use of defined and empirical processes

Real
Software Engineering

Software engineering is
the science and art

of designing and making,
with economy and elegance,
[…] systems so that they can

readily adapt to the situations to
which they may be subjected.

Software engineering will
be different from other
kinds of engineering.

divided by 2 3 4 7

9 4.5 3 2.5 1.29

10 5.0 3.33 2.5 1.43

11 5.5 3.66 2.75 1.57

12.6 6.3 4.2 3.15 1.8

22 11.0 7.33 5.5 3.14

100 50.0 33.33 25.0 14.29

class < Test::Unit::TestCase
 def test_division
 assert_equal 5.0, (10 / 2)
 assert_equal 4.2, (12.6 / 3)
 assert_in_delta 3.14, (22 / 7), 0.01
 assert 5 > (9 / 3)
 assert 4...6 === (11 / 2)
 assert_equal 32, (100 / 4)
 end
end

describe "numbers" do
 it "divides" do
 (10 / 2) .should == 5.0
 (12.6 / 3).should == 4.2
 (22 / 7) .should be_close(3.14, 0.01)
 (9 / 3) .should < 5
 (11/2) .should satisfy{|n| n > 4 && n < 6 }
 (100 / 4) .should == 32
 end
end

Feature: Addition
 In order to avoid silly mistakes
 As an error-prone person
 I want to divide two numbers

 Scenario Outline: Divide two numbers
 Given I have entered <input_1>
 And I have entered <input_2>
 When I press "divide"
 Then the result should be <result>

 Examples:
 | input_1 | input_2 | result |
 | 10 | 2 | 5.0 |
 | 12.6 | 3 | 4.2 |
 | 22 | 7 | ~=3.14 |
 | 9 | 3 | <5 |
 | 11 | 2 | 4<_<6 |
 | 100 | 4 | 32 |

eg.Divisioneg.Divisioneg.Division
numerator denominator quotient?
10 2 5.0
12.6 3 4.2
22 7 ~=3.14
9 3 <5
11 2 4<_<6

100 4
32 expected
25 actual

refactoring

continuous
integration

simple
design

system
metaphor

collective
ownership

coding
standards

pair
programming

40-hour
week

unit
testing

short
releases

on-site
customer

planning
game

acceptance
testing

pair programming
unit testing

system metaphor
continuous integration

on-site customer

collective
ownership

acceptance
testing

planning
game

short
releases

solutions

priorities

features

architecture

design
classes and interfaces

statements and
methods

pair programming
unit testing

system metaphor
continuous integration

on-site customer

collective
ownership

acceptance
testing

planning
game

short
releases

months

weeks

days

hours

minutes
seconds

vanderburg.org/Writing/xpannealed.pdf

• Code is hard to read

• Code is hard to change

• Testing is expensive

Assumptions Once True, But
No Longer

• All engineering is like structural engineering

• Programming is like building

• Modeling and analysis are about correctness

Assumptions Once Believed
But Never True

The Reality of
Software Engineering

• Software is very unlike bridges and buildings.

• Additional complexity hinders requirements,
design, and approval.

• Source code is a model.

• Building and testing our interim designs is
effectively free.

• Empirical processes are rational for software.

Software Engineering
and Craft

Design by Artisans

• Artisans may produce documents to help
themselves think.

• But they build what is in their heads.

Design by Engineers

• Engineers produce documents to help
themselves think.

• But they mostly produce documents to convey
the design to builders.

 module RSpec::Core
 class Reporter
 def initialize(*formatters)
 @formatters = formatters
 @example_count = @failure_count = @pending_count = 0
 @duration = @start = nil
 end

 def report(count)
 start(count)
 begin
 yield self
 ensure
 conclude
 end
 end

 def conclude
 begin
 stop
 notify :start_dump
 notify :dump_pending
 notify :dump_failures
 notify :dump_summary, @duration, @example_count, @failure_count, @pending_count
 ensure
 notify :close
 end
 end

Software Models
(i.e., source code)

• Because the artifact is abstract, model is
“concrete”.

• Model isomorphic to built artifact.

• Feels like working directly with the constructs.

• We are designers and builders

Software Models
(i.e., source code)

• Furthermore, we are also writers.

• Code must serve two purposes:

• to be the solution

• to describe the solution

Programs must be written for
people to read, and only incidentally

for machines to execute.
—Harold Abelson

and Gerald Jay Sussman

Software practitioners –
especially, ironically, the good

ones – often […] fall in love with
the software itself and start
thinking of themselves as

craftsmen of software.
—Dan North

Let us change our traditional attitude
to the construction of programs.

Instead of imagining that our main task
is to instruct a computer what to do,

let us concentrate rather on
explaining to human beings

what we want a computer to do.
—Donald Knuth

Internal vs. External

• Abstract vs. concrete

• Hidden vs. public and visible

• Potential effects vs. immediate effects

Programmers have the luxury of being both
engineers and craftsmen:

• because we are both designers and makers.

• because we are not insulated from the artifacts
we are designing.

• because, like craftsmen, we can feel the things we
build.

Programmers have the responsibility to be
craftsmen, not just engineers:

• because otherwise we inevitably lose sight of the
less tangible (but no less important) aspects of
our creations.

