
High-Performance Web Applications in

Haskell

Gregory Collins
Google Switzerland

QCon, London, UK

Friday, March 11, 2011

1 of 1

A little about me

My academic background was in type systems and functional

programming, mostly in Standard ML.

Past 2–3 years: 90% of my spare-time hacking has been in

Haskell.

I’m one of the lead programmers of the “Snap Framework”

(http://snapframework.com/), a web server/programming

library written in Haskell.

I work at Google Zürich as a Site Reliability Engineer.

When Google breaks, we fix it.

Google is hiring!

2 of 52

3 of 52

What’s this talk about?

My assertion: Haskell is a

really good choice for web

programming.

4 of 52

Back in 1995, we knew something that I don’t think our
competitors understood, and few understand even now: when
you’re writing software that only has to run on your own servers,
you can use any language you want. …

Our hypothesis was that if we wrote our software in Lisp, we’d be
able to get features done faster than our competitors, and also to
do things in our software that they couldn’t do. And because Lisp
was so high-level, we wouldn’t need a big development team, so
our costs would be lower.

— Paul Graham, Beating the Averages

5 of 52

In a recent talk I said something that upset a lot of people: that
you could get smarter programmers to work on a Python project
than you could to work on a Java project.

I didn’t mean by this that Java programmers are dumb. I meant
that Python programmers are smart. It’s a lot of work to learn a
new programming language. And people don’t learn Python
because it will get them a job; they learn it because they genuinely
like to program and aren’t satisfied with the languages they
already know.

— Paul Graham, The Python Paradox

6 of 52

In a recent talk I said something that upset a lot of people: that
you could get smarter programmers to work on a Python
Haskell project than you could to work on a Java project.

I didn’t mean by this that Java programmers are dumb. I meant
that Python Haskell programmers are smart. It’s a lot of work to
learn a new programming language. And people don’t learn
Python Haskell because it will get them a job; they learn it
because they genuinely like to program and aren’t satisfied with
the languages they already know.

— Paul Graham Me

7 of 52

Why build web applications in

Haskell?

Expressiveness

Correctness

Performance

8 of 52

Expressiveness

Closures and higher-order functions are awesome:

map :: (a -> b) -> [a] -> [b]

map toUpper "hello, world!" == "HELLO, WORLD!"

foldl' (+) 0 [1..10] == 55

In Haskell, a little bit of typing can go a really long way.

Higher-order functions allow you to abstract over common

structural idioms — many (most?) Gang of Four “design

patterns” are absolutely trivial for us

9 of 52

Expressiveness

Never write code like this again:

Iterator<Foo> it = l1.iterator();
ArrayList<Foo> l2 = new ArrayList<Foo>();
while (it.hasNext()) {
 l2.add(foo(it.next()));
}

Instead:

l2 = map foo l1

10 of 52

Correctness

Haskell helps you write correct programs in several ways:

Strong static typing

Pure functions

Awesome testing tools

11 of 52

Strong static typing

Static typing: the type of every value and expression is

known at compile time, before any code is executed.

Strong typing: the type system guarantees that a

program cannot have certain kinds of errors.

No null pointer exceptions

No segmentation violations

E.g. you can use the type system to ensure things like

“HTML strings are always properly escaped”.

12 of 52

Pure Functions

Biggest win for correctness: pure functions. (The Clojure guys have

this figured out too!)

Side effects are like inputs/outputs from functions which are

hidden from the programmer.

In Haskell, by default the output of a function depends only
on the inputs the programmer explicitly provides.

Pure functions have the following amazing property: given the
same inputs, a pure function will always produce the same
output.

13 of 52

Pure Functions (cont’d)

In most languages, any function you call could have
arbitrary, unknowable side-effects: it could change state,
write to disk, fire the missiles, etc.

Purity makes code more predictable and easier to test, by
eliminating whole classes of potential errors.

In concurrent code, pure functions can never cause
deadlocks or interfere with each other in any way. Pure
functions are always thread-safe!

14 of 52

Pure Functions (cont’d)

Consider the Venn diagram of all the possible programs you
could write in a typical programming language:

1 of 1

Pure Functions (cont’d)

Consider the Venn diagram of all the possible programs you

could write in a typical programming language:

15 of 52

Pure Functions (cont’d)

In Haskell, the Venn diagram is reversed: code is pure by

default, and functions which are potentially side-effecting are

clearly marked as such by the type system.

16 of 52

Testing tools: why QuickCheck is the
best thing since sliced bread

QuickCheck is kind of a “killer app” for Haskell.

Programmers tend to be lazy when writing tests, and often

only test for the cases they’re expecting to see.

QuickCheck allows you to write propositional invariants

about your code, and then QuickCheck will fuzz-test your

invariant against a set of randomly-generated inputs.

If it finds an input which breaks your invariant, it can quite often
shrink the testcase to find a minimal example.

17 of 52

QuickCheck, cont’d

In Haskell, we have a function called “take”, which takes the

first N elements of a list:

take :: Int -> [a] -> [a]

A couple of invariants we might want to test here:

! l . ! n | n >= 0 && length(l) >= n . length(take n l) == n

! l . ! n . isPrefixOf (take n l) n

18 of 52

QuickCheck, cont’d

Let’s write a (broken) implementation of take:

myTake n _ | n <= 1 = [] -- "1" should be "0" here
myTake _ [] = []
myTake n (x:xs) = x : myTake (n-1) xs

You can easily express those invariants using QuickCheck:

prop_length (l,n) = length l >= n && n >= 0 ==>
 length (myTake n l) == n

prop_prefix (l,n) = myTake n l `isPrefixOf` l

19 of 52

QuickCheck, cont’d

QuickCheck easily finds the error and gives you a minimal

failing testcase:

> quickCheck prop_length

*** Failed! Falsifiable (after 6 tests and 4 shrinks):

([()],1)

20 of 52

Performance

Haskell has an efficient native-code compiler, with performance

competitive with languages like Java and Go.

Compared to Java, the average Haskell program uses

significantly less memory while being only slightly slower on

average. (With an asterisk).

We get this even though Haskell is a much higher-level

language.

Haskell does concurrency really well, out of the box.

21 of 52

Performance (cont’d)

(source: http://shootout.alioth.debian.org

/u64/benchmark.php?test=all&lang=ghc)

22 of 52

Performance (cont’d)

When speed is absolutely critical or you want to get closer to

the “bare metal”, Haskell’s “Foreign Function Interface” lets

you easily drop down to C:

foreign import ccall unsafe "unistd.h read" c_read

 :: CInt -> Ptr a -> CSize -> IO (CSize)

foreign import ccall unsafe "unistd.h write" c_write

 :: CInt -> Ptr a -> CSize -> IO (CSize)

This is a piece of cake compared to Python’s FFI or JNI.

23 of 52

Scalability in web applications

Serving HTTP responses is an inherently concurrent problem.

Servers communicating with multiple clients

simultaneously.

Servers should be able to scale well to large numbers

of simultaneous clients.

Highly parallelizable: typically, throw more CPUs at the

problem and things go faster.

24 of 52

Concurrency models for web servers

Separate processes (forking or pre-forking). Every connection served by

a separate OS process, and no OS process serves more than one request

at once. Blocking I/O.

1.

OS-level threads. Every connection served by a separate OS thread, one

process serves many requests at once. Blocking I/O.

2.

Event-driven. Server has one or more “event loops”, each of which runs in

a single thread, handling N active connections. Uses OS-level multiplexing

(epoll() or kqueue()) to get notifications for sockets which are ready to be

read or written to. Non-blocking I/O.

3.

25 of 52

Separate processes

Everyone learns this pattern in Unix 101:

int s = accept(...);

pid_t pid = fork();

if (pid == 0) {

 /* handle request */

} else /* ... */

26 of 52

Separate processes: diagram

In the process model (and threading looks similar), we

devote one OS thread per connection:

1 of 1

Separate processes: diagram

In the process model (and threading looks similar), we

devote one OS thread per connection:

1 of 1

Separate processes: diagram

In the process model (and threading looks similar), we

devote one OS thread per connection:

1 of 1

Separate processes: diagram

In the process model (and threading looks similar), we

devote one OS thread per connection:

1 of 1

Separate processes: diagram

In the process model (and threading looks similar), we

devote one OS thread per connection:

1 of 1

Separate processes: diagram

In the process model (and threading looks similar), we

devote one OS thread per connection:

1 of 1

Separate processes: advantages

simple programming model

process isolation. No shared mutable state ! less
opportunity for concurrency problems (deadlocks, etc)

28 of 52

Separate processes: disadvantages

fork() is expensive, and even with pre-forking you have
to fork more servers under heavy concurrent load

per-process memory overhead is high

context switches between processes are pretty
expensive (O(1μs) for the context switch, plus CPU
cache is likely to be trashed)

if you want to communicate between processes (or
share state) you need IPC

29 of 52

Threading

Instead of fork(), we create a lightweight thread:

int s = accept(...);

int tid = pthread_create(...);

...

30 of 52

Threading model: advantages

Simple to implement with blocking I/O — like the
per-process model, each request is handled in a
logically-separate execution context.

Lightweight threads have less context-switch (no need
to remap MMU tables) and memory overhead
(process descriptor tables, etc) than full processes.

31 of 52

Threading model: disadvantages

switching between threads still involves a context
switch in/out of kernel protected mode

although lighter than processes, threads still introduce
a high per-connection overhead (each thread requires
its own stack, O(2MB))

32 of 52

Event-driven model

When events are received, the event dispatcher passes
control to a callback function that does some work. When
callbacks need to read or write more they re-register
themselves with the event dispatcher.

33 of 52

Event-driven model

Here’s an example from node.js (with a nod to Stefan):

function read(callback) {
 request.addListener("response", function (response) {
 var responseBody = "";
 response.setBodyEncoding("utf8");
 response.addListener("data", function(chunk) {
 responseBody += chunk;
 });
 response.addListener("end", function() {
 callback(responseBody);
 })
 });
 request.close();
}

34 of 52

Event-driven model: diagram

In the event-driven model, we run an event loop on a single

OS thread, and multiplex multiple connections on top of it:

1 of 1

Event-driven model: diagram

In the event-driven model, we run an event loop on a single

OS thread, and multiplex multiple connections on top of it:

1 of 1

Event-driven model: diagram

In the event-driven model, we run an event loop on a single

OS thread, and multiplex multiple connections on top of it:

1 of 1

Event-driven model: diagram

In the event-driven model, we run an event loop on a single

OS thread, and multiplex multiple connections on top of it:

1 of 1

Event-driven model: diagram

In the event-driven model, we run an event loop on a single

OS thread, and multiplex multiple connections on top of it:

1 of 1

Event-driven programming:
advantages

Probably the most efficient model, especially when the server

must handle large numbers of idle connections.

Per-connection overhead is very low: a little bit of

per-connection state, no stack.

Idle connections consume very few resources; modern syscalls like

epoll() and kqueue() are O(k) in the number of active connections,

and usually k << n.

36 of 52

Event-driven programming:
advantages

Key numbers here:

Kernel context switch: O(1–4 μs) — max 250k–1M/s

Processor ring switch from user to kernel mode: O(50 ns)

If you want a highly-scalable networked server, using event-

driven I/O under the hood is (almost) a must.

All of the web server throughput champions (nginx, lighttpd,

Cherokee, etc) use this model.

37 of 52

Event-driven programming:
disadvantages

Callback functions must be careful to never issue
blocking calls, as this will stall the entire event loop.

Corollary: every C library you interface with must be
adapted somehow to work asynchronously.

If you’re not careful….

38 of 52

Event-driven programming:
disadvantages (cont’d)

Nonlinearity of control flow becomes increasingly
difficult to deal with as the complexity of the code
increases.

40 of 52

Event-driven programming:

disadvantages (cont’d)

Nonlinearity of control flow becomes increasingly
difficult to deal with as the complexity of the code
increases.

40 of 52

Haskell’s threading model

Haskell uses green threads, which are lightweight
user-space threads scheduled by the GHC runtime system.

each thread takes up only a few kB for its stack and
other context.

M threads are multiplexed by the runtime system
onto N OS threads.

ignoring preemption, switching between Haskell
threads does not involve a kernel context switch!

41 of 52

Haskell’s threading model (cont’d)

Haskell threads are fast:

thread-ring benchmark: 7.3M context switches per second,
per-core (32-bit, Q6600), 4.2M context switches per second on
x64.

this is because there is no process context switch or processor
mode switch when scheduling the threads.

Entire Haskell runtime system uses non-blocking OS calls and
uses userspace locks (and green thread scheduling) to get
blocking behaviour.

42 of 52

Haskell’s threading model (cont’d)

So what happens when a Haskell thread wants to recv() some data?

thread makes a non-blocking call to recv()

if the data is there, great!

otherwise, we get EWOULDBLOCK and the thread:

schedules an interest in reading on the socket file descriptor
with the runtime system

1.

waits on a lock which the RTS will twiddle when epoll() says the
socket is readable.

2.

43 of 52

Haskell threading model (cont’d)

1 of 1

Haskell threading model (cont’d)

1 of 1

Haskell threading model (cont’d)

1 of 1

Haskell threading model (cont’d)

1 of 1

Haskell threading model (cont’d)

1 of 1

Haskell threading model (cont’d)

1 of 1

Haskell threading model (cont’d)

1 of 1

Haskell threading model (cont’d)

What about foreign calls that block?

1 of 1

Haskell threading model (cont’d)

What about foreign calls that block?

1 of 1

Haskell threading model (cont’d)

What about foreign calls that block?

1 of 1

Haskell threading model (cont’d)

What about foreign calls that block?

1 of 1

Haskell threading model:

advantages

Haskell has a hybrid model; most I/O scheduling is event-
driven (uses epoll() under the hood as of GHC 7), but for C
calls that would block it transparently switches to threaded
scheduling.

we perform as if we were event-driven, but…

no spaghetti callbacks.

46 of 52

Haskell web frameworks

So what’s available in Haskell for doing web programming
today?

Happstack — http://happstack.com/

Yesod — http://docs.yesodweb.com/

Snap Framework — http://snapframework.com/

47 of 52

Snap Framework: unscientific

benchmarks

(PONG benchmark, y axis is requests/second) (serving a 40kB file, y axis is requests/second)

48 of 52

Haskell web frameworks (cont’d)

The guys who are working on Yesod just released a minimal
web server called “Warp”.

It’s 2–4X as fast as Snap on the pong benchmark!

…so not only are we already fast, there’s headroom
within the GHC runtime system to do even better.

49 of 52

So I can switch all my web

programming to Haskell now?

Haskell web community is young and is still getting going

Many features web programmers have come to expect are

skeletal or missing

…but Haskell is currently an excellent choice for places

where you need a targeted performance boost.

API servers, compute-heavy workloads, hotspots

It’s close to as fast as C/C++/Java, but much much much nicer to
program in.

We need hackers!

50 of 52

High-Performance Web Applications in

Haskell

Gregory Collins
Google Switzerland

QCon, London, UK

Friday, March 11, 2011

Thank you!

Gregory Collins
Google Switzerland

QCon, London, UK

Friday, March 11, 2011

1 of 52

