

Jason Hunter Principal Technologist

MarkLogic Server in Ten Adjectives

- Document-centric
- Transactional
- Search-centric
- Structure-aware
- Schema-free
- XQuery- and XSLT-driven
- Extremely fast
- Clustered
- Analytical
- Database server

The Information Continuum

Information Applications

Categories include:

Common Repository	Metadata Catalog	Digital Content Delivery	Information Intelligence	Social Applications Platform
Consolidate information from variety of sources for better access and maintenance	Maintain repository of metadata to facilitate information sharing and discoverability	Repurpose existing information and distribute across devices and channels	Exploit heterogeneous information leveraging content analytics to discover trends and patterns	Share information to improve processes and support better decision-making
 Elsevier JPMorgan Chase Congressional Quarterly Intel Community 	 Library of Congress National Archives Intel Community 	 Oxford University JPMorgan Chase Wiley jetBlue 	 State Department Open Connect Intel Community Docgenix 	Warrior GatewayBusinessWeekUS Army

Universal Index

Data Model

- A database for unstructured (and semi-structured) information
- XML Data Model

Example Document

<article>

<title>A Relational Model of Data for Large Shared Data Banks</title>

<author><first-name>Edgar</first-name><last-name>Codd</last-name></author>

<abstract>

Future users of data banks must be protected from having to know how the data is organized in the machine (the internal representation). . . . Changes in data representation will often be needed . . .

</abstract>

<body>

<section>

<section> ... has values which uniquely identify each element ... </section>

</section>

<section> ... version of <product>IMS</product> provides the user . . . </section>

</body>

<metadata><vol>13</vol><number>6</number><year>1970</year></metadata></article>

1) Text

Find all documents that contain the phrase "uniquely identify"

<article>

<title>A Relational Model of Data for Large Shared Data Banks</title>

<author><first-name>Edgar</first-name><last-name>Codd</last-name></author>

<abstract>

Future users of data banks must be protected from having to know how the data is organized in the machine (the internal representation). . . . Changes in data representation will often be needed . . .

</abstract>

<body>

<section>

<section> ... has values which uniquely identify each element ... </section>

</section>

<section> ... version of <product>IMS</product> provides the user ... </section>

</body>

<metadata><vol>13</vol><number>6</number><year>1970</year></metadata></article>

1) Text

Find all documents that contain the phrase "uniquely identify"

Find all articles that have an abstract

<article>

<title>A Relational Model of Data for Large Shared Data Banks</title>

<author><first-name>Edgar</first-name><last-name>Codd</last-name></author>

<abstract>

Future users of data banks must be protected from having to know how the data is organized in the machine (the internal representation). . . . Changes in data representation will often be needed . . .

</abstract>

<body>

<section>

<section> ... has values which uniquely identify each element ... </section>

</section>

<section> ... version of <product>IMS</product> provides the user ... </section>

</body>

<metadata><vol>13</vol><number>6</number><year>1970</year></metadata>

</article>

2) Structure

Find all articles that have an abstract

3) Values

Find all documents that mention the product "IMS"

<article>

<title>A Relational Model of Data for Large Shared Data Banks</title>

<author><first-name>Edgar</first-name><last-name>Codd</last-name></author>

<abstract>

Future users of data banks must be protected from having to know how the data is organized in the machine (the internal representation). . . . Changes in data representation will often be needed . . .

</abstract>

<body>

<section>

<section> ... has values which uniquely identify each element ... </section>

</section>

<section> ... version o(out>IMS</product>provides the user ... </section>

</body>

<metadata><vol>13</vol><number>6</number><year>1970</year></metadata>

</article>

3) Values

Find all documents that mention the product "IMS"

4) Structure, Values, and Text

Find articles that contain "data" in the title and mention the product IMS in a section

<title>/ Relational Model of Data for Large Shared Data Banks</title>

author><first-name>Edgar</first-name><last-name>Codd</last-name></author>

<abstract>

<article>

Future users of data banks must be protected from having to know how the data is organized in the machine (the internal representation). . . . Changes in data representation will often be needed . . .

</abstract>

<body>

<section>

<section> ... has values which uniquely identify each element ... </section>

</section>. version o <product>INS</product> provides the user . . . </section> </body> <metadata><vol>13</vol><number>6</number><year>1970</year></metadata> </article>

4) Structure, Values, and Text

5) Scalars

How many of the articles that contain "data base" were written in each of the last 5 decades?

<article>

<title>A Relational Model of Data for Large Shared Data Banks</title>

<author><first-name>Edgar</first-name><last-name>Codd</last-name></author>

<abstract>

Future users of data banks must be protected from having to know how the data is organized in the machine (the internal representation). . . . Changes in data representation will often be needed . . .

</abstract>

<body>

<section>

<section> ... has values which uniquely identify each element ... </section>

larkLogic

</section>

<section> ... version of <product>IMS</product> provides the user ... </
section>

</body>

<metadata><vol>13</vol><number>6</number</eval>1970</year>*/metadata></article>

5) Range Indexes: **Scalar Queries and Aggregation**

How many of the articles that contain "data base" were written in each of the last 5 decades?

5) Range Indexes: Scalar Queries and Aggregation

5) Range Indexes: Scalar Queries and Aggregation

\$3000 and Up (7)

6) All Of The Above

Find all articles that contain "data" in the title and mention the product IMS in a section, grouping by year.

<title>/ Relational Model of Data for Large Shared Data Banks</title>

sauthor><first-name>Edgar</first-name><last-name>Codd</last-name></author>

<abstract>

<article>

Future users of data banks must be protected from having to know how the data is organized in the machine (the internal representation). . . . Changes in data representation will often be needed . . .

</abstract>

<body>

<section>

<section> ... has values which uniquely identify each element ... </section>

7) Collections and Security

- Directories
 - Exclusive, hierarchical, analogous to file system, based on URI
- Collections
 - Set-based, N:N relationship

- Security
 - Invisible to your app

7) Collections and Security

Degrees Of Flexibility

Other Index Features

Spatial Indexing

Points ordered in latitude major order; special scan operators apply geospatial query constraints

Spatial Query

- Data examples
 - Latitude / Longitude
 - Any other pair (e.g. volume / price)
- Query types
 - Point (exact value)
 - Point-Radius (circle)
 - Lat/Lon bound (Mercator "rectangle")
 - Polygon (10K+ vertices)
- Composition with...
 - Full Text
 - XML structure
 - XML semantics
 - Other range indexes (e.g. temporal)

Registered Query

Reverse Query -- "Alerting"

- Instead of matching documents, you match queries
- Real-time search, selectors, tippers, standing queries, filters, "triggers*", content-based routing, stream DBMS, etc.

The Reverse Index

Query

MarkLogic[®]

year > 2003 and ("data" and "web") year < 2000 and ("data" and "web") (2000 <= year <= 2010) and "web"

Carpool Matchmaking with Composed Queries

Driver

- A non-smoking woman driving from San Ramon to San Calros, leaving at 8am, listens to rock, pop, hip-hop, wants \$10 for gas
- Requires a female passenger within 5 miles of start and end

Passenger

- Woman will pay up to \$20
- From: 3001 Summit View Dr, San Ramon, CA 94582
- To: 400 Concourse Driver, Belmont, CA 94002
- Requires a non-smoking car
- Won't listen to country music


```
let $from := cts:point(37.751658, -121.898387) (: San Ramon :)
let $to := cts:point(37.507363, -122.247119) (: San Carlos :)
return xdmp:document-insert(
  "/driver.xml",
  <driver>
    <from>{ $from }</from>
    <to>{ $to }</to>
    <when>2010-01-20T08:00:00-08:00</when>
    <gender>female</gender>
    <smoke>no</smoke>
    <music>rock, pop, hip-hop</music>
    <cost>10</cost>
    <preferences>{
      cts:and-query((
         cts:element-value-query(xs:QName("gender"), "female"),
         cts:element-geospatial-query(xs:QName("from"),
           cts:circle(5, $from)),
         cts:element-geospatial-query(xs:QName("to"), cts:circle(5, $to))
      ))
    }</preferences></preferences></preferences></preferences>
  </driver>)
```

```
xdmp:document-insert(
  "/passenger.xml",
  <passenger>
    <from>37.739976,-121.915821</from>
    <to>37.53244, -122.270969</to>
    <gender>female</gender>
    <preferences>{
       cts:and-query((
         cts:not-query(cts:element-word-query(xs:QName("music"), "country")),
         cts:element-range-query(xs:QName("cost"), "<=", 20),</pre>
         cts:element-value-query(xs:QName("smoke"), "no"),
         cts:element-value-query(xs:QName("gender"), "female")
       ))
    }</preferences></preferences></preferences></preferences></preferences>
  </passenger>)
```

(: I'm the driver, find me passengers :)

```
let $me := doc("/driver.xml")/driver
for $match in cts:search(/passenger,
   cts:and-query((
      cts:query($me/preferences/element()),
      cts:reverse-query($me))
   ))[1 to 3]
return base-uri($match)
```

(: I'm a passenger, find me a driver :)

```
let $me := doc("/passenger.xml")/passenger
for $match in cts:search(/driver,
    cts:and-query((
      cts:query($me/preferences/element()),
      cts:reverse-query($me))
    ))[1]
return base-uri($match)
```

Transaction and Storage System

Multi-Version Concurrency Control

Deleted Timestamp

Multi-Version Concurrency Benefits

High Throughput

- Queries don't require locks
- Queries and Updates do not conflict

ACID

- Cluster consistency: 2-phase commit
- Zero-latency ingestion and Indexing
 - Append Only
- Ingest/update rates of ~400GB per partition per day

Forests contain Stands

1. Create A New Tree

3. Save A Buffer To Disk

4. Optimization: Merge Stands

Cluster Architecture

Databases

Simple Architecture

Shared Nothing Architecture

Core Technology: Scalability

Increase number of evaluators to scale query processing power

Increase number of data managers to scale data set size

Replicate data managers to scale peak effective I/O rate

MarkLogic Server Features

DBMS Features

- Extreme Scalability
- Real-time Transactional Updates
- High-Capacity CRUD
- Geospatial indexing
- Triggers
- Transactional backup
- Replication
- Ease of Administration
- High Availability
- Analytics

Search Features

- Integrated XML and text search
- Faceted Navigation
- Fielded search
- Alerting ("profiling")
- Relevance tuning
- Language processing
- Entity extraction / enrichment
- Foreign language support
- Thesaurus, taxonomy support
- Automatic classification

Questions?

Jason Hunter jhunter@marklogic.com

