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Talk Outline 

▪  the new Facebook Messages, and how we got started with HBase 
▪  quick overview of HBase 
▪  why we picked HBase 
▪  our work  with and contributions to HBase 
▪  a few other/emerging use cases within Facebook 
▪  future plans 
▪  Q&A 
 





The New Facebook Messages 

Emails Chats SMS Messages 



Storage 



Monthly data volume prior to launch 

15B x 1,024 bytes = 14TB 

120B x 100 bytes   = 11TB 



Messaging Data 
▪  Small/medium sized data  and indices in HBase 
▪  Message metadata & indices 
▪  Search index 
▪  Small message bodies 
 

▪  Attachments and large messages  in Haystack (our photo store) 
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About HBase 



HBase in a nutshell 
 

•  distributed, large-scale data store 

•  efficient at random reads/writes 

•  open source project modeled after Google’s BigTable 

 



When to use HBase?   

▪ storing large amounts of data (100s of TBs) 

▪ need high write throughput 

▪ need efficient random access (key lookups) within large data sets 

▪ need to scale gracefully with data  

▪ for structured and semi-structured data 

▪ don’t need full RDMS capabilities (cross row/cross table transactions,  
joins, etc.) 

 

 



HBase Data Model 
•  An HBase table is: 

•  a sparse , three-dimensional array of cells, indexed by: 
RowKey, ColumnKey, Timestamp/Version 

•  sharded into regions along an ordered RowKey space 

•  Within each region: 
•  Data is grouped into column families 

▪  Sort order within each column family: 

Row Key (asc), Column Key (asc), Timestamp (desc) 
 



•  Schema 

•  Key: RowKey: userid,  Column: word, Version: MessageID 

•  Value: Auxillary info (like offset of word in message) 

•  Data is stored sorted by <userid, word, messageID>: 

 User1:hi:17->offset1 
 User1:hi:16->offset2 
 User1:hello:16->offset3 
 User1:hello:2->offset4 
 ... 
 User2:.... 
 User2:... 
 ... 

Example: Inbox Search 

Can efficiently handle queries like: 
 
-  Get top N messageIDs for a  

specific user & word 
 
-  Typeahead query: for a given user,  

get words that match a prefix 



HBase System Overview 
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HBase Overview 
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HBase Overview 
•  Very good at random reads/writes 

•  Write path 

•  Sequential write/sync to commit log 

•  update memstore 

•  Read path 

•  Lookup memstore & persistent HFiles 

•  HFile data is sorted and has a block index for efficient retrieval 

•  Background chores 

•  Flushes (memstore -> HFile) 

•  Compactions (group of HFiles merged into one) 



Why HBase? 
Performance is great, but what else… 



Horizontal scalability 

▪  HBase & HDFS are elastic by design 

▪  Multiple table shards (regions) per physical server  

▪  On node additions 
▪  Load balancer automatically reassigns shards from overloaded 

nodes to new nodes 
▪  Because filesystem underneath is itself distributed, data for 

reassigned regions is instantly servable from the new nodes. 

▪  Regions can be dynamically split into smaller regions. 
▪  Pre-sharding is not necessary 
▪  Splits are near instantaneous! 



Automatic Failover 
 
▪  Node failures automatically detected by HBase Master 

▪  Regions on failed node are distributed evenly among surviving nodes.  
▪  Multiple regions/server model  avoids need for substantial 
overprovisioning 

▪  HBase Master failover 
▪  1 active, rest standby 
▪  When active master fails, a standby automatically takes over 



HBase uses HDFS 
We get the benefits of HDFS as a storage system for free 
▪  Fault tolerance (block level replication for redundancy) 

▪  Scalability 

▪  End-to-end checksums to detect and recover from corruptions 

▪  Map Reduce for large scale data processing 

▪  HDFS already battle tested inside Facebook 
▪  running petabyte scale clusters 
▪  lot of in-house development and operational experience 



Simpler Consistency Model 

▪  HBase’s strong consistency model 
▪  simpler for a wide variety of applications to deal with 
▪  client gets same answer no matter which replica data is read from 

 

▪  Eventual consistency: tricky for applications fronted by a cache 
▪  replicas may heal eventually during failures 
▪  but stale data could remain stuck in cache 



Other Goodies 
 

▪  Block Level Compression  
▪  save disk space 
▪  network bandwidth 

▪  Block cache 

▪  Read-modify-write operation support, like counter increment 

▪  Bulk import capabilities  



HBase Enhancements 
 



Goal of Zero Data Loss/Correctness 
▪  sync support added to hadoop-20 branch 
▪  for keeping transaction log (WAL) in HDFS 

▪  to guarantee durability of transactions 

▪  atomicity of transactions involving multiple column families 

▪  Fixed several critical bugs, e.g.: 
▪  Race conditions causing regions to be assigned to multiple servers 

▪  region name collisions on disk (due to crc32 encoded names) 

▪  Errors during log-recovery that could cause: 

▪  transactions to be incorrectly skipped during log replay 

▪  deleted items to be resurrected 



Zero data loss (contd.) 
▪  Enhanced HDFS’s Block Placement Policy:  
▪  Default Policy: rack  aware, but minimally constrained 
▪  non-local block replicas can be on any other rack, and any nodes within 

the rack 

▪  New: Placement of replicas constrained to configurable node groups 
▪  Result: Data loss probability reduced by orders of magnitude 



Availability/Stability improvements 
▪  HBase master rewrite- region assignments using ZK 

▪  Rolling Restarts – doing software upgrades without a downtime 

▪  Interruptible compactions 
▪  Being able to restart cluster, making schema changes, load-balance 

regions quickly without waiting on compactions 

▪  Timeouts on client-server RPCs 

▪  Staggered major compaction to avoid compaction storms 



Performance Improvements 
▪  Compactions 
▪  critical for read performance 
▪  Improved compaction algo 
▪  delete/TTL/overwrite processing in minor compactions 

▪  Read optimizations: 
▪  Seek optimizations for rows with large number of cells 
▪  Bloom filters to minimize HFile lookups 
▪  Timerange hints on HFiles (great for temporal data) 
▪  Improved handling of compressed HFiles 
 



Performance Improvements (contd.) 
▪  Improvements for large objects 
▪  threshold size after which a file is no longer compacted 

▪  rely on bloom filters instead for efficiently looking up object 

▪  safety mechanism to never compact more than a certain number of 
files in a single pass  
▪  To fix potential Out-of-Memory errors 

▪  minimize number of data copies on RPC response 



Working within the Apache community 
▪  Growing with the community 
▪  Started with a stable, healthy project 
▪  In house expertise in both HDFS and HBase 
▪  Increasing community involvement 

▪  Undertook massive feature improvements with community help 
▪  HDFS 0.20-append branch 
▪  HBase Master rewrite 

▪  Continually interacting with the community to identify and fix issues 
▪  e.g.,  large responses (2GB RPC) 
 



Operational Experiences 
▪  Darklaunch:  
▪  shadow traffic on test clusters for continuous, at scale testing 
▪  experiment/tweak knobs 
▪  simulate failures, test rolling upgrades 

▪  Constant (pre-sharding) region count & controlled rolling splits 

▪  Administrative tools and monitoring 
▪  Alerts (HBCK, memory alerts, perf alerts, health alerts) 
▪  auto detecting/decommissioning misbehaving machines 
▪  Dashboards 

▪  Application level backup/recovery pipeline 



Typical Cluster Layout 
▪  Multiple clusters/cells for messaging 

▪  20 servers/rack; 5 or more racks per cluster 

▪  Controllers (master/Zookeeper) spread across racks 
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Data migration 
Another place we used HBase heavily… 



Move messaging data from MySQL to HBase 
▪  In MySQL, inbox data  was kept normalized 
▪  user’s messages are stored across many different machines 

▪  Migrating a user is basically one big join across tables spread over 
many different machines 

▪  Multiple terabytes of data (for over 500M users) 

▪  Cannot pound 1000s of production UDBs to migrate users 

 

 



How we migrated 
▪  Periodically, get a full export of all the users’ inbox data in MySQL  

▪  And, use bulk loader to import the above into a migration HBase 
cluster 

▪  To migrate users: 
▪  Since users may continue to receive messages during migration: 

▪  double-write (to old and new system) during the migration period 

▪  Get a list of all recent messages (since last MySQL export) for the 
user  
▪  Load new messages into the migration HBase cluster 
▪  Perform the join operations to generate the new data 
▪  Export it and upload into the final cluster 



Facebook Insights 
Real-time Analytics using HBase 
 



Facebook Insights Goes Real-Time 
▪  Recently launched real-time analytics for social plugins on top of 

HBase 

▪  Publishers get real-time distribution/engagement metrics: 
▪  # of impressions, likes 
▪  analytics by  

▪  Domain, URL, demographics 
▪  Over various time periods (the last hour, day, all-time) 

▪  Makes use of HBase capabilities like: 
▪  Efficient counters (read-modify-write increment operations)  
▪  TTL for purging old data 



Future Work 
It is still early days…! 

▪  Namenode HA (AvatarNode) 

▪  Fast hot-backups (Export/Import) 

▪  Online schema  & config changes 

▪  Running HBase as a service (multi-tenancy) 

▪  Features (like secondary indices, batching hybrid mutations) 

▪  Cross-DC replication 

▪  Lot more performance/availability improvements 

 

 



Thanks! Questions? 
facebook.com/engineering 


