
HBase @ Facebook
The Technology Behind Messages (and more…)

Kannan Muthukkaruppan

Software Engineer, Facebook

March 11, 2011

Talk Outline

▪  the new Facebook Messages, and how we got started with HBase
▪  quick overview of HBase
▪  why we picked HBase
▪  our work with and contributions to HBase
▪  a few other/emerging use cases within Facebook
▪  future plans
▪  Q&A

The New Facebook Messages

Emails Chats SMS Messages

Storage

Monthly data volume prior to launch

15B x 1,024 bytes = 14TB

120B x 100 bytes = 11TB

Messaging Data
▪  Small/medium sized data and indices in HBase
▪  Message metadata & indices
▪  Search index
▪  Small message bodies

▪  Attachments and large messages in Haystack (our photo store)

Our architecture

Cell 1

Application Server

HBase/HDFS/
ZK

Haystack

Cell 3

Application Server

HBase/HDFS/
ZK

Cell 2

Application Server

HBase/HDFS/
ZK

User Directory Service
Clients

(Front End, MTA, etc.)
What’s the cell for

this user?

Cell 1

Attachments

Message, Metadata,
Search Index

About HBase

HBase in a nutshell

•  distributed, large-scale data store

•  efficient at random reads/writes

•  open source project modeled after Google’s BigTable

When to use HBase?

▪ storing large amounts of data (100s of TBs)

▪ need high write throughput

▪ need efficient random access (key lookups) within large data sets

▪ need to scale gracefully with data

▪ for structured and semi-structured data

▪ don’t need full RDMS capabilities (cross row/cross table transactions,
joins, etc.)

HBase Data Model
•  An HBase table is:

•  a sparse , three-dimensional array of cells, indexed by:
RowKey, ColumnKey, Timestamp/Version

•  sharded into regions along an ordered RowKey space

•  Within each region:
•  Data is grouped into column families

▪  Sort order within each column family:

Row Key (asc), Column Key (asc), Timestamp (desc)

•  Schema

•  Key: RowKey: userid, Column: word, Version: MessageID

•  Value: Auxillary info (like offset of word in message)

•  Data is stored sorted by <userid, word, messageID>:

 User1:hi:17->offset1
 User1:hi:16->offset2
 User1:hello:16->offset3
 User1:hello:2->offset4
 ...
 User2:....
 User2:...
 ...

Example: Inbox Search

Can efficiently handle queries like:

-  Get top N messageIDs for a

specific user & word

-  Typeahead query: for a given user,

get words that match a prefix

HBase System Overview

Master

Region
Server

Region
Server

Backup Master

Region
Server

. . .

HBASE

 Namenode

Datanode Datanode

Secondary Namenode

Datanode

. . .
HDFS

 ZK
Peer

ZK
Peer

Zookeeper Quorum

. . .

Database Layer

Storage Layer Coordination Service

. . . .
Region #2

HBase Overview

Region #1

HBASE Region Server

Write Ahead Log (in HDFS)

. . . .

ColumnFamily #2

ColumnFamily #1 Memstore
(in memory data structure)

HFiles (in HDFS) flush

HBase Overview
•  Very good at random reads/writes

•  Write path

•  Sequential write/sync to commit log

•  update memstore

•  Read path

•  Lookup memstore & persistent HFiles

•  HFile data is sorted and has a block index for efficient retrieval

•  Background chores

•  Flushes (memstore -> HFile)

•  Compactions (group of HFiles merged into one)

Why HBase?
Performance is great, but what else…

Horizontal scalability

▪  HBase & HDFS are elastic by design

▪  Multiple table shards (regions) per physical server

▪  On node additions
▪  Load balancer automatically reassigns shards from overloaded

nodes to new nodes
▪  Because filesystem underneath is itself distributed, data for

reassigned regions is instantly servable from the new nodes.

▪  Regions can be dynamically split into smaller regions.
▪  Pre-sharding is not necessary
▪  Splits are near instantaneous!

Automatic Failover

▪  Node failures automatically detected by HBase Master

▪  Regions on failed node are distributed evenly among surviving nodes.
▪  Multiple regions/server model avoids need for substantial
overprovisioning

▪  HBase Master failover
▪  1 active, rest standby
▪  When active master fails, a standby automatically takes over

HBase uses HDFS
We get the benefits of HDFS as a storage system for free
▪  Fault tolerance (block level replication for redundancy)

▪  Scalability

▪  End-to-end checksums to detect and recover from corruptions

▪  Map Reduce for large scale data processing

▪  HDFS already battle tested inside Facebook
▪  running petabyte scale clusters
▪  lot of in-house development and operational experience

Simpler Consistency Model

▪  HBase’s strong consistency model
▪  simpler for a wide variety of applications to deal with
▪  client gets same answer no matter which replica data is read from

▪  Eventual consistency: tricky for applications fronted by a cache
▪  replicas may heal eventually during failures
▪  but stale data could remain stuck in cache

Other Goodies

▪  Block Level Compression
▪  save disk space
▪  network bandwidth

▪  Block cache

▪  Read-modify-write operation support, like counter increment

▪  Bulk import capabilities

HBase Enhancements

Goal of Zero Data Loss/Correctness
▪  sync support added to hadoop-20 branch
▪  for keeping transaction log (WAL) in HDFS

▪  to guarantee durability of transactions

▪  atomicity of transactions involving multiple column families

▪  Fixed several critical bugs, e.g.:
▪  Race conditions causing regions to be assigned to multiple servers

▪  region name collisions on disk (due to crc32 encoded names)

▪  Errors during log-recovery that could cause:

▪  transactions to be incorrectly skipped during log replay

▪  deleted items to be resurrected

Zero data loss (contd.)
▪  Enhanced HDFS’s Block Placement Policy:
▪  Default Policy: rack aware, but minimally constrained
▪  non-local block replicas can be on any other rack, and any nodes within

the rack

▪  New: Placement of replicas constrained to configurable node groups
▪  Result: Data loss probability reduced by orders of magnitude

Availability/Stability improvements
▪  HBase master rewrite- region assignments using ZK

▪  Rolling Restarts – doing software upgrades without a downtime

▪  Interruptible compactions
▪  Being able to restart cluster, making schema changes, load-balance

regions quickly without waiting on compactions

▪  Timeouts on client-server RPCs

▪  Staggered major compaction to avoid compaction storms

Performance Improvements
▪  Compactions
▪  critical for read performance
▪  Improved compaction algo
▪  delete/TTL/overwrite processing in minor compactions

▪  Read optimizations:
▪  Seek optimizations for rows with large number of cells
▪  Bloom filters to minimize HFile lookups
▪  Timerange hints on HFiles (great for temporal data)
▪  Improved handling of compressed HFiles

Performance Improvements (contd.)
▪  Improvements for large objects
▪  threshold size after which a file is no longer compacted

▪  rely on bloom filters instead for efficiently looking up object

▪  safety mechanism to never compact more than a certain number of
files in a single pass
▪  To fix potential Out-of-Memory errors

▪  minimize number of data copies on RPC response

Working within the Apache community
▪  Growing with the community
▪  Started with a stable, healthy project
▪  In house expertise in both HDFS and HBase
▪  Increasing community involvement

▪  Undertook massive feature improvements with community help
▪  HDFS 0.20-append branch
▪  HBase Master rewrite

▪  Continually interacting with the community to identify and fix issues
▪  e.g., large responses (2GB RPC)

Operational Experiences
▪  Darklaunch:
▪  shadow traffic on test clusters for continuous, at scale testing
▪  experiment/tweak knobs
▪  simulate failures, test rolling upgrades

▪  Constant (pre-sharding) region count & controlled rolling splits

▪  Administrative tools and monitoring
▪  Alerts (HBCK, memory alerts, perf alerts, health alerts)
▪  auto detecting/decommissioning misbehaving machines
▪  Dashboards

▪  Application level backup/recovery pipeline

Typical Cluster Layout
▪  Multiple clusters/cells for messaging

▪  20 servers/rack; 5 or more racks per cluster

▪  Controllers (master/Zookeeper) spread across racks

Rack #1

ZooKeeper Peer
HDFS Namenode

Region Server
Data Node
Task Tracker

 19x...

Region Server
Data Node
Task Tracker

Rack #2

ZooKeeper Peer
Backup Namenode

Region Server
Data Node
Task Tracker

 19x...

Region Server
Data Node
Task Tracker

Rack #3

ZooKeeper Peer
Job Tracker

Region Server
Data Node
Task Tracker

 19x...

Region Server
Data Node
Task Tracker

Rack #4

ZooKeeper Peer
Hbase Master

Region Server
Data Node
Task Tracker

 19x...

Region Server
Data Node
Task Tracker

Rack #5

ZooKeeper Peer
Backup Master

Region Server
Data Node
Task Tracker

 19x...

Region Server
Data Node
Task Tracker

Data migration
Another place we used HBase heavily…

Move messaging data from MySQL to HBase
▪  In MySQL, inbox data was kept normalized
▪  user’s messages are stored across many different machines

▪  Migrating a user is basically one big join across tables spread over
many different machines

▪  Multiple terabytes of data (for over 500M users)

▪  Cannot pound 1000s of production UDBs to migrate users

How we migrated
▪  Periodically, get a full export of all the users’ inbox data in MySQL

▪  And, use bulk loader to import the above into a migration HBase
cluster

▪  To migrate users:
▪  Since users may continue to receive messages during migration:

▪  double-write (to old and new system) during the migration period

▪  Get a list of all recent messages (since last MySQL export) for the
user
▪  Load new messages into the migration HBase cluster
▪  Perform the join operations to generate the new data
▪  Export it and upload into the final cluster

Facebook Insights
Real-time Analytics using HBase

Facebook Insights Goes Real-Time
▪  Recently launched real-time analytics for social plugins on top of

HBase

▪  Publishers get real-time distribution/engagement metrics:
▪  # of impressions, likes
▪  analytics by

▪  Domain, URL, demographics
▪  Over various time periods (the last hour, day, all-time)

▪  Makes use of HBase capabilities like:
▪  Efficient counters (read-modify-write increment operations)
▪  TTL for purging old data

Future Work
It is still early days…!

▪  Namenode HA (AvatarNode)

▪  Fast hot-backups (Export/Import)

▪  Online schema & config changes

▪  Running HBase as a service (multi-tenancy)

▪  Features (like secondary indices, batching hybrid mutations)

▪  Cross-DC replication

▪  Lot more performance/availability improvements

Thanks! Questions?
facebook.com/engineering

