

Do's and Don'ts on Android

Experiences from a successful project

Overview

● Introduction

● Trifork & Me

● The project

● Live Demo

● Our Setup

● High level architecture

● The technical stuff
● Camera

● Animation / Graphics

● Wrap-up

● Questions

Trifork & Me

● Danish, living in CH for 3 years.
● I work for Trifork GmbH (The Swiss Branch)

and this project since sept. 2010.
● Background in embedded programming

● C/C++
● Optimizing for speed and memory
● Very small platforms, few resources
● Brought up with Java at University

The project

● Provide mobile banking on smart phones for
the biggest bank in northern Europe.

● For release as independent packages in 5
different countries:

DK, SE, FI, NO, EN(*).

What we achieved

● To be first movers
● To deliver an extremely popular mobile banking

solution.
● The most advertised piece of software (in

Denmark at least).
● Was top download from the Android Market for

weeks.
● A very happy customer.

Features

● View accounts
● Transfers (domestic)
● Payments (Camera/OCR/Barcodes)
● Locate ATMs and branches
● Currency calculator

Live Demo...

The Setup

● Eclipse (OS X, Linux, Windows)
● Android SDKr9
● Mercurial
● Build server: Jenkins (formerly known as

Hudson)
● Custom ant build scripts
● Scrum
● Good people (placed in CH and DK)

High level architecture

Android
&

Iphone
smartphones

BANK
SYSTEMS

INTERNET

Architecture
D

E
V

IC
E

S

Bank Systems

JSON over SSL
GMB MOBILE BANKING

SS-API

Cameras

● Are difficult:
● Must work on Android 1.6 (API Lvl4)

– which has bad camera support
● Different devices have very different cameras (or

behavior)
● Need to minimize network traffic

– Minimize picture resolution

Camera API

● API Lvl 4:
● Does not support

public List<Integer> getSupportedPictureFormats ()

● Possible solution Cameras.Parameters.flatten():
– sharpness-max=30;zoom=0;taking-picture-zoom=0;zoom-

supported=true;sharpness-min=0;…;picture-size-
values=2592x1952,2592x1728,2592x1552,2560x1920,2560x1712,2
048x1536,2048x1360,2048x1216,2016x1344,1600x1200,1584x105
6,1280x960,1280x848,1280x768,1248x832,1024x768,640x480,640
x416,640x384,624x416,512x384,400x400,272x272;....;contrast-
min=0;picture-size=1024x768;max-
zoom=5;effect=none;saturation=5;whitebalance-
values=auto,incandescent,fluorescent,...

● Together with: public void set (String key, String value)

Camera API

● On phones API > 4: try reflection to get / set
picture sizes...

● Server architecture to the rescue:
● It is possible to send 'overrides' form the server.
● As a last resort: disable functionality.

● This is a general solution to the problem of a very
diverse device eco-system! (If you use a server
architecture)

Animations

● Initially we did this wrong:
● Layers
● Many pieces of graphics
● Slow onDraw impl.
● Nice Object Oriented Coding

● Result: 10-12 FPS.

Matrix mtx = new Matrix();

mtx.postRotate(bitmapAngle);

Bitmap.createBitmap(bitmap, 0, 0,
bitmap.getWidth(), bitmap.getHeight() , mtx, true);

● Replaced with rotating canvas (eliminating
creation + rotating bitmaps): +5-6 FPS.

Animations
Slow onDraw impl

Animations
Do not do: Nice OO

protected void OnDraw() {
...

drawInCenter(canvas, rotatedBitmap);

...

}
● A extends B extends View; drawInCenter()

implemented in B.
● Getting rid of B and implementing method locally:

+4 FPS.

Animations
Do not do: Nice OO

● An experiment:
● A extends B; B extends C.
● A and B have method

public void exec() { super.exec(); }
● C has method

public void exec() { a++;}

Animations
Do not DO: Nice OO

● A a = new A(); B b = new B();

● Do do nice OO – just not where it hurts!
● Do learn where it hurts!

Hierarchy
height

2 (b.exec();) 3 (a.exec();)

Execution time ~11.3s ~16.5s

Relative exec.
time

+0% +46%

An (easy & small) optimization

● This one described on Google-dev:
● Remove the DecorView background image on

opaque & full screen applications.

● This gave me a 6% performance boost, going from
44 to 47 FPS in an application.

● Create theme (res/values):

● Use it (AndroidManifest.xml):

An (easy & small) optimization

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="Theme.NoBackground" parent="android:Theme">
 <item name="android:windowBackground">@null</item>
 </style>
</resources>

<application android:icon="@drawable/icon" android:label="@string/app_name"
android:theme="@style/Theme.NoBackground">

...
</application>

Another (“easy & small”)
optimization

● What's the cost of complicated view
hierarchies?

● Wrapped view in 4 RelativeLayouts
● Each RL had a cost of 2-4 FPS!

Crash reports

● Android market gives us a view of the health of our
products.
● Exception traces
● Versions
● Statistics.

● Does not tell us:
● Device type,
● Make & model,
● os version,
● changeset number etc.

Crash reports

● That is easy:
● Create your own UncaughtExceptionHandler
● Make it put whatever your heart desires in the crash

report

● BUT:
Make sure it does not crash!

Crash handler example
public class MyUncaughtExceptionHandler extends Object implements
UncaughtExceptionHandler {

private final UncaughtExceptionHandler defaultHandler;

public MyUncaughtExceptionHandler(Activity app) {
defaultHandler = Thread.getDefaultUncaughtExceptionHandler();

}

public void uncaughtException(Thread thread, Throwable e) {

StringBuilder report = new StringBuilder(e.toString());

// add stuff to the report.

Throwable t = new Throwable(report.toString(), e);
defaultHandler.uncaughtException(thread, t);

}
}

 CHANGESET: 29616dab2e52

 BOARD: bravo

 BRAND: htc_wwe

 CPU_ABI: armeabi-v7a

 DEVICE: bravo

 DISPLAY: bravo

 FINGERPRINT: htc_wwe/htc_bravo/bravo/bravo:2.2/FRF91/293415:user/release-keys

 HOST: AA108

 ID: FRF91

 MANUFACTURER: HTC

 MODEL: HTC Desire

 PRODUCT: htc_bravo

 VERSION.CODENAME: REL

 VERSION.INCREMENTAL: 293415

 VERSION.RELEASE: 2.2

 VERSION.SDK: 8

 VERSION.SDK_INT: 8

at
com.trifork.android.CrashHandler2.MyUncaughtExceptionHandler.uncaughtException(MyUncaughtExceptionHandler
.java:50)

at java.lang.ThreadGroup.uncaughtException(ThreadGroup.java:887)

at java.lang.ThreadGroup.uncaughtException(ThreadGroup.java:884)

at dalvik.system.NativeStart.main(Native Method)

Caused by: java.lang.OutOfMemoryError

...

Feedback

● Read the comments on your Google market
account:
● Get clues on weird behavior.
● Get great ideas for improvements.
● Get good and bad criticism.
● Have a laugh :) (some comments are really funny)

● More importantly:
● Do take the feedback seriously!

For the nerds!

● The source is available.
● You can build the entire Android OS yourself!
● You can read the source code.
● Can be helpful if documentation is lacking /

insufficient.
● Can give you deep understanding of the system

(OS Framework / Dalvik / Camera handling …)
● Debug / step through OS Code...

Know your tools

● Eclipse (Through DDMS)is bundled with some
strong tools:
● Profiler
● Memory statistics
● Hierarchy Viewer
● logcat
● Much more...

Summary

● Do use the server! (if you have one)
● Do create annotated crash reports. (But KISS)
● Do: Google has an great collection of technical

articles. All great reads. Read them!
● Do lots of experiments. Get real experience!

Experiment to know what really matters and what not.
● Do: Use the tools! Inspect layouts, use the profiler, use

DDMS etc.
● Do take feedback seriously!

Summary

● Prevent any unnecessary memory allocations.
● Particularly in your onDraw methods:

● precalculate whatever you can
● Remove memory allocs. The GC will come for you.

● Do sanitize your layouts. Keep the hierarchies
low!

● Do keep the number of graphics down.
● Do not try to do nice OO (where it matters!)

Questions?

THANK YOU!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

