
  

Do's and Don'ts on Android

Experiences from a successful project
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Trifork & Me

● Danish, living in CH for 3 years.
● I work for Trifork GmbH (The Swiss Branch) 

and this project since sept. 2010.
● Background in embedded programming

● C/C++
● Optimizing for speed and memory
● Very small platforms, few resources
● Brought up with Java at University



  

The project

● Provide mobile banking on smart phones for 
the biggest bank in northern Europe.

● For release as independent packages in 5 
different countries: 

DK, SE, FI, NO, EN(*).



  

What we achieved

● To be first movers
● To deliver an extremely popular mobile banking 

solution.
● The most advertised piece of software (in 

Denmark at least).
● Was top download from the Android Market for 

weeks.
● A very happy customer.



  

Features

● View accounts
● Transfers (domestic)
● Payments (Camera/OCR/Barcodes)
● Locate ATMs and branches
● Currency calculator



  

Live Demo...



  



  

The Setup

● Eclipse (OS X, Linux, Windows)
● Android SDKr9
● Mercurial
● Build server: Jenkins (formerly known as 

Hudson)
● Custom ant build scripts
● Scrum
● Good people (placed in CH and DK)
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Cameras

● Are difficult:
● Must work on Android 1.6 (API Lvl4)

– which has bad camera support
● Different devices have very different cameras (or 

behavior)
● Need to minimize network traffic

– Minimize picture resolution



  

Camera API

● API Lvl 4: 
● Does not support 

public List<Integer> getSupportedPictureFormats ()

● Possible solution Cameras.Parameters.flatten():
– sharpness-max=30;zoom=0;taking-picture-zoom=0;zoom-

supported=true;sharpness-min=0;…;picture-size-
values=2592x1952,2592x1728,2592x1552,2560x1920,2560x1712,2
048x1536,2048x1360,2048x1216,2016x1344,1600x1200,1584x105
6,1280x960,1280x848,1280x768,1248x832,1024x768,640x480,640
x416,640x384,624x416,512x384,400x400,272x272;....;contrast-
min=0;picture-size=1024x768;max-
zoom=5;effect=none;saturation=5;whitebalance-
values=auto,incandescent,fluorescent,...

● Together with: public void set (String key, String value)



  

Camera API

● On phones API > 4: try reflection to get / set 
picture sizes...

● Server architecture to the rescue:
● It is possible to send 'overrides' form the server.
● As a last resort: disable functionality.

● This is a general solution to the problem of a very 
diverse device eco-system! (If you use a server 
architecture)



  

Animations

● Initially we did this wrong:
● Layers
● Many pieces of graphics
● Slow onDraw impl.
● Nice Object Oriented Coding

● Result: 10-12 FPS.



  

Matrix mtx = new Matrix();

mtx.postRotate(bitmapAngle);

Bitmap.createBitmap(bitmap, 0, 0, 
bitmap.getWidth(), bitmap.getHeight() , mtx, true);

● Replaced with rotating canvas (eliminating 
creation + rotating bitmaps): +5-6 FPS.

Animations
Slow onDraw impl



  

Animations
Do not do: Nice OO

protected void OnDraw() {
...

drawInCenter(canvas, rotatedBitmap);

...

}
● A extends B extends View; drawInCenter() 

implemented in B.
● Getting rid of B and implementing method locally: 

+4 FPS.



  

Animations
Do not do: Nice OO

● An experiment:
● A extends B; B extends C. 
● A and B have method

public void exec() { super.exec(); }
● C has method

public void exec() { a++;}



  

Animations
Do not DO: Nice OO

● A a = new A(); B b = new B(); 

● Do do nice OO – just not where it hurts!
● Do learn where it hurts!

Hierarchy 
height

2 (b.exec();) 3 (a.exec();)

Execution time ~11.3s ~16.5s

Relative exec. 
time

+0% +46%



  

An (easy & small) optimization

● This one described on Google-dev:
● Remove the DecorView background image on 

opaque & full screen applications.

● This gave me a 6% performance boost, going from 
44 to 47 FPS in an application.



  

● Create theme (res/values):

● Use it (AndroidManifest.xml):

An (easy & small) optimization

<?xml version="1.0" encoding="utf-8"?>
<resources>
    <style name="Theme.NoBackground" parent="android:Theme">
        <item name="android:windowBackground">@null</item>
    </style>
</resources>

<application android:icon="@drawable/icon" android:label="@string/app_name"
android:theme="@style/Theme.NoBackground">

...
</application>



  

Another (“easy & small”) 
optimization

● What's the cost of complicated view 
hierarchies?

● Wrapped view in 4 RelativeLayouts
● Each RL had a cost of 2-4 FPS!



  

Crash reports

● Android market gives us a view of the health of our 
products.
● Exception traces
● Versions
● Statistics.

● Does not tell us:
● Device type, 
● Make & model, 
● os version, 
● changeset number etc.



  

Crash reports

● That is easy:
● Create your own UncaughtExceptionHandler
● Make it put whatever your heart desires in the crash 

report

● BUT:
Make sure it does not crash!



  

Crash handler example
public class MyUncaughtExceptionHandler extends Object implements
UncaughtExceptionHandler {

private final UncaughtExceptionHandler defaultHandler;

public MyUncaughtExceptionHandler(Activity app) {
defaultHandler = Thread.getDefaultUncaughtExceptionHandler();

}

public void uncaughtException(Thread thread, Throwable e) {

StringBuilder report = new StringBuilder(e.toString());

// add stuff to the report.

Throwable t = new Throwable(report.toString(), e);
defaultHandler.uncaughtException(thread, t);

}
}



  

   CHANGESET: 29616dab2e52

   BOARD: bravo

   BRAND: htc_wwe

   CPU_ABI: armeabi-v7a

   DEVICE: bravo

   DISPLAY: bravo

   FINGERPRINT: htc_wwe/htc_bravo/bravo/bravo:2.2/FRF91/293415:user/release-keys

   HOST: AA108

   ID: FRF91

   MANUFACTURER: HTC

   MODEL: HTC Desire

   PRODUCT: htc_bravo

   VERSION.CODENAME: REL

   VERSION.INCREMENTAL: 293415

   VERSION.RELEASE: 2.2

   VERSION.SDK: 8

   VERSION.SDK_INT: 8

-------------------------------

at 
com.trifork.android.CrashHandler2.MyUncaughtExceptionHandler.uncaughtException(MyUncaughtExceptionHandler
.java:50)

at java.lang.ThreadGroup.uncaughtException(ThreadGroup.java:887)

at java.lang.ThreadGroup.uncaughtException(ThreadGroup.java:884)

at dalvik.system.NativeStart.main(Native Method)

Caused by: java.lang.OutOfMemoryError

...



  

Feedback

● Read the comments on your Google market 
account:
● Get clues on weird behavior. 
● Get great ideas for improvements.
● Get good and bad criticism.
● Have a laugh :) (some comments are really funny)

● More importantly:
● Do take the feedback seriously!



  

For the nerds!

● The source is available.
● You can build the entire Android OS yourself!
● You can read the source code.
● Can be helpful if documentation is lacking / 

insufficient.
● Can give you deep understanding of the system 

(OS Framework / Dalvik / Camera handling … )
● Debug / step through OS Code...



  

Know your tools

● Eclipse (Through DDMS)is bundled with some 
strong tools:
● Profiler
● Memory statistics
● Hierarchy Viewer
● logcat
● Much more...



  

Summary

● Do use the server! (if you have one)
● Do create annotated crash reports. (But KISS)
● Do: Google has an great collection of technical 

articles. All great reads. Read them!
● Do lots of experiments. Get real experience! 

Experiment to know what really matters and what not.
● Do: Use the tools! Inspect layouts, use the profiler, use 

DDMS etc.
● Do take feedback seriously!



  

Summary

● Prevent any unnecessary memory allocations.
● Particularly in your onDraw methods:

● precalculate whatever you can
● Remove memory allocs. The GC will come for you.

● Do sanitize your layouts. Keep the hierarchies 
low!

● Do keep the number of graphics down.
● Do not try to do nice OO (where it matters!)



  

Questions?



  

THANK YOU!
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