
Why I chose
mongodb

for guardian.co.uk

Mat Wall
Lead Software Architect, guardian.co.uk

“It is not the strongest of the species that
survives, nor the most intelligent. It is the one

that is most adaptable to change.”

Early Period

circa ’95

The “Lash It Together” era

Early Period (95, the “Lash It Together” era)

Perl, CGI, apache

Experimental
Manual processes
Bespoke software

RDBMS, scripts
& static files

Mid Period

circa ’00

The “Vendor CMS” era

Mid Period: 2000s (The “Vendor CMS era”)

Vignette / AOLserver
TCL, Apache, Oracle

Platform for online
publishing

Initially scales well with
acceleration in delivery

of features

Mid Period: 2000s (The “Vendor CMS era”)

Surprise! Vendor’s CMS
doesn’t do what we want!

Mish-mash in templates:
HTML, JavaScript, TCL,

SQL, PL-SQL

No model in app tier, only
in RDBMS schema created

in Oracle Designer

Mid Period: 2000s (The “Vendor CMS era”)

Mid Period: 2000s (The “Vendor CMS era”)

Mid Period: 2000s (The “Vendor CMS era”)

After a few years, very
difficult to extend

Database schema
becomes fixed due to

dependencies in
templates

Mid Period: 2000s (The “Vendor CMS era”)

If you can’t change the
system:

Modern Period

circa ’05-09

The “J2EE Monolithic” era

I bring you NEWS!!!App server App server App server

Web server Web server Web server

CMS Data feeds

Oracle

I bring you NEWS!!!App server App server App server

Web server Web server Web server

CMS Data feeds

Oracle

Modern java app

Spring / Hibernate

DDD / TDD

Strong model in java

Database abstracted away with ORM

Problems

Each release involves schema upgrade

Schema upgrade = downtime for journalists

Complexity still increasing:

300+ tables,
10,000 lines of hibernate XML config

1,000 domain objects mapped to database
70,000 lines of domain object code

Very tight binding to database

ORM not really masking complexity:

 Database has strong influence on domain model: many
domain objects made more complex mapping joins in

RDBMS

Complex hibernate features used, interceptors, proxies

 Complex caching strategy
 Lots of optimisations

 And:

 We still hand code complex queries in SQL!

Load becoming an issue

RDBMS difficult to scale

Partial NoSQL

circa ’09-10

The “Sticking Plaster” era

Introduce yet more caching to patch up load problems

Decouple applications from database by building APIs

Power APIs using alternative, more scalable technologies

APIs used to scale out database reads

Writes still go to RDBMs

App server

Web servers

CMS

Memcached (20Gb)

Solr

Core

Solr/API

Solr/API

Solr/API

Solr/API

Solr/API

Cloud, EC2

M/Q

Api

rdbms

Mutualised news!
Content API

Read API delivered using Apache Solr

Hosted in EC2

Document oriented search engine

Loose schema: records, fields, facets

Scales well for read operations

Introduction of memcached

Related content from Solr

Mutualised news!
We’ve solved our load problem (for now)

but

Increased our complexity

Mutualised news!We now have 3 models!

RDBMS tables

Java Objects

JSON API

Mutualised news!

Mutualised news!

Mutualised news!

Mutualised news!JSON API is very simple

Multiple domain concepts expressed in single document

Can be designed in forwardly extensible way

What if the JSON API was our primary model?

Full NoSQL

in development

The “It’s the future!” era

The first project: Identity

Current login/registration system still in TCL/PL-SQL

3M+ users in relational database

Very complex schema + PL-SQL

New system required

Can we migrate from Oracle to NoSql?

Database selection

Simple keystore. Too simple?

Huge scalability. Do we need it?
Schema design difficult.

Simple to use, can execute similar
queries to RDBMs

Mutualised news!

MongoDB

Document oriented database
Stores parsed JSON documents

Can express complex queries

Can be flexible about consistency

Malleable schema: can easily change at runtime

Can work at both large & small scales

Mutualised news!

MongoDB concepts

RDBMS MongoDB

Table Collection

Row JSON Document

Index Index

Join Embedding & Linking

Partition Shard

Mutualised news!

Flexible Schema

Mutualised news!

Flexible Schema

Mutualised news!

Flexible Schema

Can easily represent different classes of tag as
documents

Both documents can be inserted into
same collection

Far simpler than equivalent hibernate
mapped subclass configuration

Mutualised news!

Flexible Schema

Simple to query:

Mutualised news!

Flexible Schema

Simple to query:

Query operators:
$ne, $nin, $all, $exists, $gt, $lt, $gte ...

Mutualised news!

Modifying the schema

Mutualised news!

Modifying the schema

Mutualised news!

Modifying the schema

Mutualised news!

Schema upgrades

Schema can be upgraded simply by upgrading the
application version

Application must deal with differing document versions

Can become complex over time

Mutualised news!

Schema upgrades

This can be mitigated by:

Adding a “version” key to each document

Updating the version each time the application modifies a
document

Using MapReduce capability to forcibly migrate documents
from older versions if required

mongod

Mongodb architecture

Single node
Durability only possible in upcoming 1.8 release

(databse fsync from buffer every min)

mongod

Mongodb architecture

Replica set

mongod

master replicas

mongod

mongod

mongod

Can choose to read &
write from master for full

consistency

Can choose to run reads
on slaves to scale reads

mongod

Mongodb architecture

Replica set

mongod

master replicas

mongod

mongod

mongod

Can choose to read &
write from master for full

consistency

Can choose to accept dirty
reads from slaves to scale

reads

Durability achieved (<1.8) via replication

Reads can be scaled out onto replicas
(eventual consistency)

All writes to master

If master fails, new master nominated by election

DB drivers handle most cluster complexity

mongos

shard shard shard shard

replica replica replica replica

replica replica replica replica

Mongodb architecture

consistent

inconsistent
(replica)

(master)

Aggregator

replica replica replica replica

mongos

shard shard shard shard

replica replica replica replica

replica replica replica replica

Mongodb architecture

consistent

inconsistent
(replica)

(master)

Aggregator

replica replica replica replica

Writes scaled by sharding

Shards populated by ranges

mongos queries appropriate shard(s)

Shards automatically balanced

Developers (essentially) unaware of shards

Mongodb durability

Relies (pre 1.8) on replication for durability
1.8 features optional journaling & redo logs

Database users need to be cluster aware,
each query can specify:

No error checking / write confirmation
Write confirmed on master

Write replicated to N slave servers

Mutualised news!

Old Idenity system

Hundreds of tables & stored procedures

New Identity model

User List

Fields

Dates

Statuses

Text
Date/Time
Boolean

Very simple domain objects

Simple, flexible objects
No hibernate session

Very simple domain objects

Flexible schema embraced in domain object design

Very simple domain objects

Using casbah scala drivers = significant reduction in LOC
vs SQL implementation

Build API that can support both backends

Registration app guardian.co.uk

API

OracleMongoDB

Build API that can support both backends

Registration app guardian.co.uk

API

OracleMongoDB

This bit is hard!

Migrate using API & decommision

Registration app guardian.co.uk

API

MongoDB

Add new stuff!

Registration app guardian.co.uk

MongoDB Solr?

API

Redis?

MongoDB

Simple, flexible schema with similar query & indexing to
RDBMS

Great at small or large scale
Easy for developers to get going

Commercial support available (10Gen)
One day may power all of guardian.co.uk

No transactions / joins: developers must cater for this

Produces a net reduction in lines of code / complexity

Shameless plug

We’re hiring:

http://www.careersatgnl.co.uk

http://www.careersatgnl.co.uk
http://www.careersatgnl.co.uk

