b,

I
) |

f

"'
Y

Complex Event Processing:
DSL for High Frequency Trading

Richard Tibbetts
StreamBase Systems
QCon London 2011

Myth: High level domain
specific languages are
too slow for HFT.

Reality: High level domain
specific languages can deliver
better performance than
system programming languages

g Confidential Material - Copyright StreamBase Systems

High Frequency Trading

Financial trading where latency is critical to profitability

Four Main Scenarios
* Alpha seeking — arbitrage
* Rebate seeking — market making
* Transaction cost minimization — execution management

* Service providers — risk management, exchanges

Different tolerances for latency across asset class, use cases

* Speed to catch opportunity, speed to not get run over, speed to keep
customers

Most often from scratch in systems programming languages

* C++, maybe Java

Lots of talk and some use of hardware acceleration, FPGA and
GPUs

Confidential Material - Copyright StreamBase Systems 3

Complex Event Processing aka Event Processing

= Software organized by events (compare object oriented)
* What’s an event? What’s an object?
* And event is something can trigger processing, can include data.
* Naturally but not usually represents a “real world” event or observation.

= Complex Event Processing Platforms
* Software stack for event based systems, event driven architectures
* Event Programming Language — SQL-based, Rules-based, or State-based

* Commercial and open source: StreamBase, Progress, Microsoft, IBM,
Oracle, SAP, Esper, Drools and many more

= Adopted in financial services and other markets

* System monitoring, industrial process, logistics, defense/intelligence

= Other Event Processing Approaches:
* Erlang, Actors, node.js, .NET Rx

g Confidential Material - Copyright StreamBase Systems

Why a DSL?

= High level

= Graphical

= Appropriate for purpose
= Understandable

= Flexible

- Clayton Christensen

Qimplicity s always disruptive”

' e
e developed in 4 months what DA

<>
would have taken 4 years.”
3 - StreamBase customer Kairos
‘ 5

$

“We modify the DehaviBE our
trading system every day.”

£
- StreamBase customer PhaseCapital StreamBase Systems

k
g Confidential Material - Copyright StreamBase Systems 5

Challenges for DSL in HFT

= Ultra Low Latency
* Sub-millisecond is standard, sub-100-micro is desired.

= Large Data Volumes

* Hundreds of thousands of quotes per second, thousands of orders

= Demanding Operational Environment (in some ways)

* Not 24x7, not low touch, but availability during market hours is key

= Sophisticated Data Processing (sometimes)

* Options pricing, yield curves, risk metrics and more

= See also: LMAX talk from QCon http://bit.ly/fUeSOP
g Confidential Material - Copyright StreamBase Systems 6

= [ntro: Myth, Reality, HFT, CEP
= Benefits of a DSL, Challenges of HFT
= StreamBase Accomplishments — Performance and Productivity

= Designing a Language for HFT: Performance and Extensibility
 Static Analysis
* Code generation and the Janino compiler
* Garbage optimization
* Adapter API, FIX Messaging
* Parallelism, lanes and tiers

* Integrations, C++ and Java plugins
= Lessons Learned
= Shameless Plug

= Acknowledgements, Questions and Answers

g Confidential Material - Copyright StreamBase Systems 7

StreamBase Event Processing Platform

Studio Integrated Development Environment Visualization

Developer Studio T - e el
Graphical StreamSQL for developing, == Es T E 4 dEe
back testing and deploying applications. 2

StreamBase =2
StreamBase 3

Component
Frameworks =

Exchange

Applications

Input Adapter(s)

Inject streaming (market

data) and static (reference StreamBase Server

i —
data) sources.

Output Adapter(s)
Send results to systems, users, user
screens and databases.

Event Processing Server
High performance optimized engine
can process events at market data
speeds.

g Confidential Material - Copyright StreamBase Systems 8

StreamBase StreamSQL EventFlow

o o

5 SB Authoring - FX_Aggregation_Sample/MarketDataSample.sbapp - Studio 7.
File Edit Navigate Search Project EventFlow Insert Run Window Help

il O ®EHE 0w v @l B~ 2 [@ ~%~-0-Q-~ ARSI A CIRCI AR B [SB Test/Debug 755 SB Authoring | (=) SB Demos
Module Explorer &2 5 mY <08 MarketDataSample.sbapp 2 =8

type filter text

=2 FX_Aggregation_Components -

Rapid Deployment
& Unit Testing

=]

TestFIXExecutionVenue
algos

&
(7=
= p—
- I

- ~—
/ = ~_

. Y
CurrenexExecutionHandler Ky

(= execution

(= ArrivalPrice IVI d I M &

(= ExecutionStorage O u a rlty) v

= POV L

(= PercentageParticipation WhichVenue fak Reports

Polymorphism N

S leStrategylnt ted.sb
amplestrategyintegrated.sbapp HotspotExecutionHandler

ScalingAlgorithm

=
& TWAP TopOfBook
(= VWAP
(= VectorQuantity MarketD: 5 (AutoT = 3 \,
(= VectorVolume °
=, signalin ° O) _
%= '9_ ing TNPUTR— ‘m — — L S— OrderStatus =]
(= execution (1)} r‘— oL = e = ,J
& interfaces HotspotSubscriptions Ellgg psStE LS) *‘h‘ 3 OUTESy
— i ;
(= marketdata P P HotspotFXMarketDataHandler n (e MW 'E; .
= util ° (ToB ParentOrders — — ParentOrderStatus
o — ParentStatus
& & = INPUT oo DataManager OrderM | \ger
- = =4 ——#e0UTPUT
ii Palette &3 8 . -~ 'ﬁ’gg
CurrenexSubscriptions SN
=3 Operators and Adapters & CurrenexMarketDataHandler ChildOrderStatus
ChildStatus
.? Z B \'M“..slr = .
Map Filter Aggre... Union \/
(2] égca 74 a INPUT o == f(x) S
Join Gather Merge Lock) ExecutionStrategy
ManualOrderin SequenceRegld FormatOrderWithRegld

@ Y k' &

Unlock Heart... Metro... Split Pattern

- 8 &

Seque... Iterate Module

o= =D

Input Output
Adapter Adapter

Interfaces &

25
JAVA

Off The Shelf

Off The Shelf

Extension Points Business Logic

Connectivity

=] Data Constructs

7, Streams Editor | Definitions | Parameters | Dynamic Variables | Metadata
5:0° crRERSDE
—

Confidential Material - Copyright StreamBase Systems 9

Kinds of Applications

Data Management Data Enrichment

= Aggregation Analytics
Derived calculations

= Cleansing)
Index computation

= Normalization

Alpha Seeking
= Trading strategies
= Buy/sell signals

Dealing

= Market Making
* Pricing

= Auto quoting

= Symbology matching Risk
= Latency monitoring, Pre & post trade
alerting Position keeping
Auto hedging
Back testing System Monitoring
= Market replay Feed monitoring

= Chaining multiple Qrders

sources
ke

Trade Execution
= Execution algorithms

= Smart order routing
=TCA

g Confidential Material - Copyright StreamBase Systems

10

StreamBase Accomplishments Performance & Productivity

= Productivity

Don’t reinvent the wheel... or the gaskets, fuel tank, seats, air bag
Connectivity (100+ adapters), plumbing, scalability built in
Support for agile development process

* Quants and developers working together
Decrease time-to-market and time-to-change 40-90%

* 10 weeks to 2 days

* Improved communication, iterative development, business alignment

= Performance

Ultra low latency — As low as 80 microsecond end to end latency
Predictable latency — 99t percentile, minimize outliers
High throughput — 100s of thousands of messages per second per core

Scale — Horizontally and Vertical, Multi-core and Cluster

Confidential Material - Copyright StreamBase Systems 11

=

Compilation and Static Analysis
* Design the language for it

Modular abstraction, interfaces
* Quants and Developers Collaborate

Bytecode generation and the Janino compiler
* Optimized bytecodes, in-memory generation
Garbage optimization
* Pooling, data class, invasive collections

Integrations, C++ and Java plugins
* Efficient native interfaces

Adapter API, FIX Messaging

* Threading and API structure for ultra low latency

Parallelism, Clustering, Lanes and Tiers
* Scalability with latency in mind

Named Data Formats, Schemas
* Sharing data and semantics between apps

ofelover ol

Confidential Material - Copyright StreamBase Systems 12

Compilation Static Analysis

= Design the language for compilation and performance
 Static typing, controlled mutation

= @Graphical structure is natural for domain

 Statically defined application traversal pattern

= Avoid listeners, virtual/dynamic dispatch, registration

* Except where necessary for extensibility, parallelism

= Graph defines data sharing
* Pure functional expression language

* Immutable messages, shared mutable data in tables ‘

@ 00

= hf@/ S 1
o filn® - 9
e z - —nOUTPL‘
D

Aggregate OutputStream?2

InputStream
Union Map Split

-— Confidential Material - Copyright StreamBase Systems 13

Modular abstraction, interfaces

= Heterogeneous Teams: Quants and Developers Collaborate

= Graphical Language still requires sophisticated abstraction

* Modules, parameterization, polymorphism, hygenic macros
= [nterfaces support dependency injection

= Back testing and production deployment of same code

* Back testing harness uses same interfaces, historical data

= Allow reuse of infrastructure components across asset classes

* Order state management, book building, etc

. (= PercentageParticipation
| SampleStrategylntegrated.sbapp
(= ScalingAlgorithm (- CombineDatain_TopOfBook &l
(= TWAP
(= VWAP
(= VectorQuantity
(= VectorVolume
(= signaling
(= execution
(= interfaces
(= marketdata
B AggregateDepthOfBook.sbapp

El AggregateTopOfBook.sbapp

E BlendDepthOfBook.sbapp

E] BlendTopOfBook.sbapp

| DepthOfBookUpdateToAllFormats.sba

g [75] MakePairTonOfBook.sbaop
Confidential Material - Copyright StreamBase Systems 14

Bytecode generation and the Janino compiler

= Composite data types
* Composed of primitive Java data types, arrays

= Explicit inlining

class Module_foobar extends MainModule {
public void enqueueTuples(StreamProperties stream, byte[] buffer) {

° ° if (stream matches In) {
u M O n 0 m 0 rp h |c ca I I Sltes /I demarshall tuples from the wire, and call s__In(...).
}

}

[} H void s__In(int f1_value, boolean 1_null, byte[] f2_data, long f2_offlen) {
Work Wlth the ‘"T op__ Where(f1_value, f1_null, f2_data, f2_offlen);
}
° ° void op__Where(int f1_value, boolean f1_null, byte[] f2_data, long f2_offlen) {
u Calllng convention if (1 _null && f1_value > 5) {
op__Select(f1_value, f1_null, f2_data, f2_offlen);

}

}

void op__Select(int f1_value, boolean f1_null, byte[] f2_data, long f2_offlen) {
int x_value; boolean x_null; byte[] y_data; long y_offlen;

* Queue structures if (f1_null) {
x_value = 0; x_null = true;

}else{
x_value = f1_value * 2; x_null = false;

* Introduction of dataclass

}
. if (f2_offlen == OFFLEN_NULL) {

—— .| ﬂx) Y L o }ersed?la = null; y_offlen = OFFLEN_NULL;

y_data = EvalUtil.concat(f2_data, offlen, EvalUtil.stringToBytes(" + f1_value));

InputStream Map Filter OutputStream s_Outlx_value, x_bull, y_data, y_offlen):

void s__Out(x_value, x_null, y_data, y_offlen) {
/f send output to any subscribers

}

g Confidential Material - Copyright StreamBase Systems 15

Garbage optimization

= All objects live forever or highly transient

= Minimize per-event transient objects (to zero)

* Test harness to measure per-event garbage

= Collector tuning

* Smaller heaps, smaller young gen, faster promotion for low latency

* Clustering for large apps in small heaps
= Primitive data types, infrequently allocated arrays

= Test harness for identifying garbage sources

REUS
REDL
RECYCILE

5 Confidential Material - Copyright StreamBase Systems 16

DataClass

= A shared struct, all users of the data object inject members

= Compiled Tuple Implementation
» Efficient access

* Minimize copying, mutation

= |nvasive Collections
* |nvasive collections add their own members to DataClass

* No header objects

/* Header Header
* Add a field that will be managed by DataClass. - hashcode - hashcode
* the offset of the field. . /\ .
y Fields Fields
public int addManagedField(final CFieldDecl field) { - inv coll - inv coll

if (state 1= STATE_CONSTRUCTING) { V_/

throw new IllegalStateException("Can only add managed fiel CFIG'dS CFleldS

}

managedFields.add(field); - data - data

return managedFields.size() - 1;
} - op state - op state

S — T —

/ﬁ*

* Add a field that will not be managed by DataClass.
*/
public void addField(final (G.FieldDecl field) {
clazz.add(field);
}

g public void addFields(final CG.FieldDecl[] decls) {
Confidential Material - Copyright StreamBase Systems

17

Integrations, C++ and Java plugins

= Efficient native interfaces

= JNI does integers and byte buffers. No objects
* Tailor C++ APIs to this reality

* Infrequent resizing

= Java APIs designed for garbage efficiency

* Primitive types

® 0O '« LogFunction.cpp (@)
. * an exception if its argument is less than or equal to zero.
* Object reuse “ |
class LogFunction : public PluginFunction {
virtual void typecheck(const Schema &arg_types) {
requireSize(arg_types, 1);
// argument type should be either double or int
requireType(arg_types, @, DataType::DOUBLE, DataType::INT);
setReturnType(DataType: :DOUBLE); T\
} !
virtual void eval(Tuple &retval, Tuple &args) { g‘
double arg = args.getDouble(@);
if (arg <= @) { |
ostringstream arg_str;
arg_str << arg;
throw PluginEvalException("log(" + arg_str.str() + ") is undefined") D'
G .
’ !
} ! ‘
retval.setDouble(®, logCarg));
}
STREAMBASE _DECLARE_PLUGIN_FUNCTION(LogFunction); "
IH »
STREAMBASE _DEFINE_PLUGIN_FUNCTION(LogFunction, "log"); s
v

--:**- LogFunction.cpp Bot L26 SVN:110459 (Ci++/1 Abbrev)-------ceoomommaaaao

g Confidential Material - Copyright StreamBase Systems 18

Adapter API, Third Party Integrations

= Threading and API structure for ultra low latency

= Adapter threads carry the message through application
processing

= Single thread from ingest to output

* Requires care to avoid deadlocks in third party libraries
= Memory management hints in API: reuseTuple, factory methods

= Compiled tuple implementation — backed by dataclass

= Tightly integrate key messaging technologies - . l
* FIX: QuickFIX, Cameron, etc rvancias | \f
* Venues, Hardware acceleration @] Lime
NnviDiA Brokerage

* Cluster Messaging: P2P, Solace

S$Olace Systems %—9
377 THOMSON REUTERS
= Autobahn

Confidential Material - Copyright StreamBase Systems

Parallelism, Clustering, Lanes and Tiers

= Scalability with latency in mind

= For low latency, single machine per message, minimize queues

= Parallelize in the middleware, e.g. Solace

= Lanes offer stable latency when scaling, less efficient hardware
utilization

= Tiers for efficiency of node-role

Connection Manager

Confidential Material - Copyright StreamBase Systems 20

Named Data Formats, Schemas

= Data formats are key driver of event driven app design
= Named schemas for sharing data types, fields, definitions

= Basis for Interfaces and Extension Points

* Teams combining developers, quants, analysts

= Non-Flat message model (despite SQL heritage)

* Sub-tuples, Lists

' QuotesToOrders.sbint i

§ 2 s

: > :

4 Named Schemas 5 /'. Qﬁ— \ E
- <@> VenueConfigSchema i - y \‘\ E

4 ‘= <Imported Schemas > : /_/'/ Q20Implementations g E

. AccountSchema E <'/ \\\ i

» <@> CompositeDepthOfBookResponseSchema :;) \QuotesToOrdersWithHistoricalDa ,L. Q

» CompositeQuoteSchema :

» DepthOfBookRequestSchema stamp
» DepthOfBookResponseSchema
» DepthOfBookUpdateSetSchema

. / Unic
RichQZOImplementations

'
1 1
1 1
1 1
1 - 1
1 1
g) l
..
Confidential Material - Copyright StreamBase Systems 21

Lessons Learned, What Not To Do

= Messages are fatter than you would think
* Particularly internal messages; often have 100-200 fields

= QOveruse of code generation (passive voice)
* Not everything needs to be hyper-optimized

* Favor active voice code, with active voice tests, and passive voice
subclasses. Trust in monomorphic call sites and the JIT. But verify.

= Delayed emphasis on separate compilation

* Formalize and test calling convention early

" Invest in performance measurement

* Don’t be afraid to have your core engineers writing performance
measurement and analysis harnesses

g Confidential Material - Copyright StreamBase Systems 22

Shameless Plugs

= StreamBase
* You could build one of these yourself, or use ours...

* Download and test out the full product http:/www.streambase.com

* Build something and submit to the StreamBase Component Exchange

* http://sbx.streambase.com

* Contact us to buy or to an OEM partner, offices London, Boston, New York
* We’re hiring
* We're training
* http://www.streambase.com/developers-training-events.htm
= DEBS - Distributed Event Based Systems
* Academic (ACM) Conference outside NYC in July http://debs2011.fzi.de/

= EPTS — Event Processing Technology Society
* http://ep-ts.org industry consortium

5 Questions? .

1y
X W .’. i
' Questions?

Download StreamBase and More Information
http://www.streambase.com

