

@r39132

2 Talks @ QCon London

�  Whitepaper : Netflix’s Transition to High-
Availability Storage Systems

�  Title : Netflix’s Cloud Data Architecture
�  Track : Architectures You’ve Always Wondered

About
�  General Overview

�  Data Replication Deep Dive

�  Title : NoSQL @ Netflix
�  Track : NoSQL : Where and How

�  SimpleDB, S3, and Cassandra

2 @r39132

What is Netflix?

Circa 1997

�  Rent a Movie
�  Right of first sale

4 @r39132

�  Buy a Movie
�  Any retailer (e.g. Walmart) or e-tailer (e.g. Amazon)

What is Netflix?

5 @r39132

�  A brick-and-mortar store can only hold ~1k-2k titles
�  Which DVD titles do they pick?

�  Brand New Releases

�  Long-standing Hits (e.g. The Godfather)

�  Brand New Releases are expensive

�  Stores profit by re-renting the same video within a short
time frame (i.e. DVD Availability Window)
�  Must impose steep rental fees and steeper late fees

What is Netflix?

Circa 1997

�  Netflix saw opportunity in the long-tail business
�  We store >120K titles in our 50+ shipping hubs

�  We recommend movies in the long tail,
personalized to the customer, lowering costs

6 @r39132

What is Netflix?

In 1999

�  Netflix launches DVD rentals-by-mail
�  Unlimited rentals for a flat monthly fee

�  No due dates

�  No late fees

�  No shipping or handling fees

7 @r39132

What is Netflix?

After a few years…

8 @r39132

What is Netflix?

Fast Forward to 2008

�  Netflix forecasts the gradual end of the DVD and
starts switching to Movie Streaming

�  Upside?
�  We spend $500MM to $600MM annually on US Postage for

DVD mailing

�  Streaming a movie is 1/100th the cost of shipping a DVD

�  Easier to craft a business model for international expansion

9 @r39132

What is Netflix?

0
5

10
15
20
25

Source: http://ir.netflix.com

•  We have 20M+ subscribers in the US and Canada
•  Uses 20% of US peak downstream bandwidth
•  1st or 2nd largest CDN user in the US

10

What is Netflix?

Grew subscribers 2008-2010 by partnering with
device makers

�  Game Consoles
�  Xbox 360, Wii, PS3

�  Mobile Devices
�  Apple IPad, IPhone, IPod Touch, Windows 7

11 @r39132

Migration to AWS

Our Cloud Story

�  Circa late 2008, Netflix had a single data center
�  Single-point-of-failure (a.k.a. SPOF)

�  Approaching limits on cooling, power, space, traffic
capacity

�  Alternatives
�  Build more data centers

�  Outsource our capacity planning and scale out
�  Allows us to focus on core competencies

@r39132 13

Our Cloud Story

�  Winner : Outsource our capacity planning and scale out
�  Leverage a leading Infrastructure-as-a-service provider

�  Amazon Web Services

�  Footnote : A short 2 years later, we serve >90% of our traffic out
of AWS
�  excluding the video streaming bits, which come from CDNs

14 @r39132

The Netflix Application Platform

How Netflix Uses AWS

AWS IAAS
•  Persistence

•  SimpleDB, RDS, S3,
EBS

• Load Handling
• EC2, EMR, ASG, ELB

• Monitoring
• CloudWatch

? Netflix
Applications

@r39132 16

AWS provides various IAAS offerings, but applications
need more!

How Netflix Uses AWS

AWS IAAS
•  Persistence

•  SimpleDB, RDS, S3,
EBS

• Load Handling
• EC2, EMR, ASG, ELB

• Monitoring
• CloudWatch

Netflix Platform
•  Platform.jar
•  Middle-tier Load

Balancing
•  Discovery
•  Encryption Services
•  Caching
•  Configuration

Netflix
Applications

@r39132 17

AWS provides various IAAS offerings, but applications
need more!

Hence the need for Netflix’s infrastructure team to bridge
the gap!

?

How Netflix Uses AWS

18 @r39132

S3 Simple
DB

SQS

EC2 EC2

AWS IAAS

EC2 EC2 EC2 EC2

Netflix mid-tier services (e.g. Q or
Merch services)

AWS ELB
Netflix edge services (e.g. WWW)

Q

WWW

Merch

Our Cloud Story

19 @r39132

S3 Simple
DB

SQS

EC2 EC2

AWS IAAS

EC2 EC2 EC2 EC2

Netflix mid-tier services (e.g. Q or
Merch services) w/ platform.jar

AWS ELB

Discovery Middle Tier Load Balancer

Netflix Platform

Netflix edge services (e.g. WWW)

Q Merch

WWW

How Netflix Uses AWS (EC2 Stack)

Guest OS / VM / Host OS / Machine

Platform & Other Infrastructure jars

Application

Discovery Client

MT Load Balancer

Crypto Client

S3 Client

SimpleDB Client

SQS Client

EVCache Client

Configuration Client

@r39132 20

The Netflix Data Platform

How Netflix Uses AWS

�  Persistence in the Cloud (c.f. NoSQL @ Netflix talk)
�  SimpleDB

�  S3

�  Cassandra

�  Data Replication
�  IR (a.k.a. Item Replicator)

�  HAProxy + Squid + Oracle à temporary

@r39132 22

SimpleDB

Persistence : SimpleDB

SimpleDB Hash Table Relational Databases

Domain Hash Table Table

Item Entry Row

Item Name Key Mandatory Primary Key

Attribute Part of the Entry Value Column

@r39132 24

Terminology

Persistence : SimpleDB

@r39132 25

Soccer Players

Key Value

ab12ocs12v9 First Name = Harold Last Name = Kewell
Nickname = Wizard of
Oz

Teams = Leeds United,
Liverpool, Galatasaray

b24h3b3403b First Name = Pavel Last Name = Nedved
Nickname = Czech
Cannon

Teams = Lazio,
Juventus

cc89c9dc892 First Name = Cristiano Last Name = Ronaldo

Teams = Sporting,
Manchester United,
Real Madrid

SimpleDB’s salient characteristics
•  SimpleDB offers a range of consistency options

•  SimpleDB domains are sparse and schema-less

•  The Key and all Attributes are indexed

•  Each item must have a unique Key

•  An item contains a set of Attributes
•  Each Attribute has a name
•  Each Attribute has a set of values
•  All data is stored as UTF-8 character strings (i.e. no support for types such as numbers or dates)

Persistence : SimpleDB

�  Moved some of our largest transactional data sets to SimpleDB in
2010
�  e.g. RENTAL HISTORY : Everything that anyone has watched at

Netflix, including streaming and DVD

�  We have
�  ~ thousands of domains

�  ~ 1TB of OLTP/transactional data (i.e. no CLOBS or BLOBS)

�  ~ billions of rows of data (a.k.a. items)

�  We execute billions of SimpleDB statements per day

@r39132 26

S3

Persistence : S3

�  Simple KV store organized as objects in buckets
�  Each AWS account is given a max of 10 buckets

�  Each bucket can hold an unlimited number of objects

�  We use S3 to store data that does not fit into SimpleDB
�  Logs from streaming devices

�  Files used in movie encoding

�  Truncated-tail of Rental History
�  Good pattern introduced by Greg Kim

@r39132 28

Item Replicator

Data Replication between Oracle, SimpleDB, S3, and
Cassandra

Data Replication : IR

�  Home-grown Data Replication Framework known as IR for Item
Replication

�  Keeps data in sync between RDBMS (DC) and NoSQL (Cloud)
�  Mostly unidirectional: DC à Cloud

�  2 data capture schemes in use currently

�  Trigger-oriented IR
�  All CRUD operations on source table X are copied via a trigger

to XLog_i journal tables (i is the shard index)

�  IR reads (polls) from a journal table

�  Simple IR
�  IR reads (polls) from source table X directly

@r39132 30

IR

Data Capture Schemes : IR

�  Trigger-oriented IR (e.g. Movie Q)

@r39132 32

Table X

Table XLog_0

Table XLog_1

Table XLog_2

Table XLog_3

CRUD

IR

IR

IR

IR Netflix Data Center

AWS
Write partition 0

Write partition 3

Write partition 2

Write partition 1

Data Capture Schemes : IR

�  Simple IR (e.g. Rental History)

@r39132 33

Table X

CRU

IR

IR

IR

IR

Read partition 0

Read partition 3

Read partition 2

Read partition 1

Netflix Data Center

AWS

IR’s Polling Select

�  Anatomy of an IR Select Query
�  Execute the SQL below as a recurring poll

 select * from RENTAL_HISTORY r

 where r.LAST_MODIFIED_TS > checkpoint value ß (A)

 and r.LAST_MODIFIED_TS < (now-10 seconds) ß (B)

 order by r.LAST_MODIFIED_TS asc ß (C)

�  (A) – preserves progress in case IR crashes and restarts

�  (B) – handles interesting race condition… will explain in later slide

�  (C) – in order read for repeatability as in (A)

@r39132 35

IR’s Polling Select

�  Anatomy of an IR Select Query
�  Assume previous checkpoint is T0

�  @ time = T4, only the top 2 records are visible and will be replicated

�  (B) hides The Town and Duma

�  {1, The Machinist} and then {2, Blood Diamond} are replicated to the
cloud

�  After IR replicates this data, the checkpoint is now T2

@r39132 36

Customer_ID Movie_ID last_modified_ts

1 The Machinist T1

2 Blood Diamond T2

4 The Town T4 - 3sec

1 Duma T4

ß
ß

IR’s Polling Select

�  Anatomy of an IR Select Query
�  Assume previous checkpoint is T2

�  @ time = T4+12 sec, The 3 records pointed to by arrows are visible
and replicated to the cloud
�  Of these 1 new record, The King’s Speech, became visible in time to be

replicated – Commit-delayed

@r39132 37

Customer_ID Movie_ID last_modified_ts

1 The Machinist T1

2 Blood Diamond T2

4 The Town T4 – 3 sec

3 The King’s Speech T4

1 Duma T4

5 Rescue Dawn T4 + 11 sec

ß
ß
ß

new

new

IR’s Polling Select

�  “Commit-delayed” Race Condition

�  Consider 2 update transactions
�  Transaction 1

update RENTAL_HISTORY r

set r.LAST_MODIFIED_TS = systimestamp,

r.MOVIE_ID = ‘The Machinest good’

where r.CUSTOMER_ID = 1;

commit;

�  Transaction 2

update RENTAL_HISTORY r

set r.LAST_MODIFIED_TS = systimestamp,

r.MOVIE_ID = ‘Blood Diamond good’

where r.CUSTOMER_ID = 2;

commit;

@r39132 38

IR’s Polling Select

�  One possible schedule
�  Transaction 1

update RENTAL_HISTORY r

set r.LAST_MODIFIED_TS = systimestamp @T1

r.MOVIE_ID = ‘The Machinest good’

where r.CUSTOMER_ID = 1;

commit; @T4

�  Transaction 2
update RENTAL_HISTORY r

set r.LAST_MODIFIED_TS = systimestamp, @T2

r.MOVIE_ID = ‘Blood Diamond good’

where r.CUSTOMER_ID = 2;

commit; @T3

@r39132 39

IR’s Polling Select

@r39132 40

Customer_ID Movie_ID last_modified_ts

1 The Machinist bad T0

2 Blood Diamond bad T0

Customer_ID Movie_ID last_modified_ts

1 The Machinist bad T0

2 Blood Diamond good T2

Customer_ID Movie_ID last_modified_ts

1 The Machinist good T1

2 Blood Diamond good T2

-- Transaction 2 commits at T3, but records T2

-- IR replicates “Blood Diamond good” and sets checkpoint = T2

-- Transaction 1 commits at T4, but records T1

-- IR will never see “The Machinist good” because checkpoint
already advanced past T1 to T2

IR’s Polling Select

�  Solving the “Commit-delayed” Race Condition
�  Transaction 1

update RENTAL_HISTORY r

set r.LAST_MODIFIED_TS = systimestamp,

r.MOVIE_ID = ‘The Machinest good’

where r.CUSTOMER_ID = 1

and r.last_modified_ts < (now – 10 sec);

commit;

�  Transaction 2

update RENTAL_History r

set r.LAST_MODIFIED_TS = systimestamp,

r.MOVIE_ID = ‘Blood Diamond good’

where r.CUSTOMER_ID = 2;

and r.last_modified_ts < (now – 10 sec);

commit;

@r39132 41

Forklifting Historical Data

�  Fork-lifting Data – TRICKS!
�  Trigger-oriented IR

�  Trickle-lifting

�  Parallel fork-lifting and incremental replication

�  Simple IR
�  Typically need to forklift by recovering a snapshot in a second

database
�  Execute forklift of that data

�  Assume database snapshot @ time = T1

�  In the primary database, buffer modifications until forklift
complete

�  One forklift is complete, replicate data changed after
time=T1

@r39132 43

Forklifting Historical Data

@r39132 44

Forklifting Historical Data

�  Trickle-lifting Data for the movie Q
�  User with id=6 adds a movie to his queue

�  Trigger fires to replicate that data to QLOG_6 (e.g. 6 % 10 shards =
6)

�  Along the way, the trigger checks whether user with id=6 is found in
the member_progress table

�  If not, the user id is inserted into the member_progress table

�  If so, no action is taken

�  A separate program called QTouch will notice a new record while
polling the member_progress table : user id = 6

�  QTouch will execute a harmless update of all records for the user to
fork-lift that user’s data into the cloud

@r39132 45

Best Practices : IR

�  Data Model Best Practices
�  Checkpoint Column

�  Choose a Timestamp not Date data type (i.e. for
microsecond granularity) or an ordered sequence

�  Need a Before Trigger to set the timestamp or sequence
�  Don’t trust what is passed in by DB clients

�  Index the column

@r39132 46

HAProxy + Squid + Oracle

Data lives in Oracle but is cached in the cloud

Data Replication : HAProxy+Squid+Oracle

@r39132 48

