

@r39132

Coordinates

� Twitter : @r39132 #qconlondon2011

� Blog : practicalcloudcomputing.com

� White Paper : Netflix’s Transition to High
Availability Storage Systems
 @r39132 - #qconlondon2011 2

Netflix Intro

�  Paid subscription service delivering video streaming
and DVDs by mail

�  20M+ paying subscribers

�  Fast becoming #1 video subscription business in the
US

�  ~200-300 engineers in Los Gatos, CA

�  ~$2B revenue in 2010

�  Expanding globally in the years to come

@r39132 - #qconlondon2011 4

Motivation

�  Circa late 2008, Netflix had a single data center
�  Single-point-of-failure (a.k.a. SPOF)

�  Approaching limits on cooling, power, space, traffic
capacity

�  Alternatives
�  Build more data centers

�  Outsource the majority of our capacity planning and
scale out
�  Allows us to focus on core competencies

 @r39132 - #qconlondon2011 6

Motivation

�  Winner : Outsource the majority of our capacity planning and
scale out
�  Leverage a leading Infrastructure-as-a-service provider

�  Amazon Web Services

�  Footnote : As it has taken us a while (i.e. ~2+ years) to realize our
vision of running on the cloud, we needed an interim solution to
handle growth
�  We did build a second data center along the way

�  We did outgrow it

7 @r39132 - #qconlondon2011

Cloud Migration Strategy

�  Components
�  Applications and Software Infrastructure

�  Data

�  Migration Considerations
�  Avoid sensitive data for now

�  PII and PCI DSS stays in our DC, rest can go to the cloud

�  Favor Web Scale applications & data

@r39132 - #qconlondon2011 9

Cloud Migration Strategy

Examples of Data that can be moved

�  Video-centric data
�  Critics’ and Users’ reviews

�  Video Metadata (e.g. director, actors, plot description, etc…)

�  User-video-centric data – some of our largest data sets
�  Video Queue

�  Watched History

�  Video Ratings (i.e. a 5-star rating system)

�  Video Playback Metadata (e.g. streaming bookmarks, activity logs)

@r39132 - #qconlondon2011 10

Cloud Migration Strategy

�  High-level Requirements for our Site

�  No big-bang migrations

�  New functionality needs to launch in the cloud when possible

�  High-level Requirements for our Data

�  Data needs to migrate before applications

�  Data needs to be shared between applications running in the
cloud and our data center during the transition period

@r39132 - #qconlondon2011 12

Cloud Migration Strategy

@r39132 - #qconlondon2011 13

Cloud Migration Strategy

@r39132 - #qconlondon2011 14

Cloud Migration Strategy

@r39132 - #qconlondon2011 15

Cloud Migration Strategy

�  Pick a (key-value) data store in the cloud
�  Challenges

�  Translate RDBMS concepts to KV store concepts

�  Work-around Issues specific to the chosen KV store

�  Create a bi-directional DC-Cloud data replication
pipeline

@r39132 - #qconlondon2011 16

Pick a Data Store in the Cloud

An ideal storage solution should have the following features:
þ  Hosted

þ  Managed Distribution Model

þ  Works in AWS

þ  AP from CAP

þ  Handles a majority of use-cases accessing high-growth, high-
traffic data
þ  Specifically, key access by customer id, movie id, or both

@r39132 - #qconlondon2011 18

Pick a Data Store in the Cloud

�  We picked SimpleDB and S3
�  SimpleDB was targeted as the AP equivalent of our

RDBMS databases in our Data Center

�  S3 was used for data sets where item or row data
exceeded SimpleDB limits and could be looked up
purely by a single key (i.e. does not require secondary
indices and complex query semantics)
�  Video encodes

�  Streaming device activity logs (i.e. CLOB, BLOB, etc…)

�  Compressed (old) Rental History

@r39132 - #qconlondon2011 19

SimpleDB

Technology Overview : SimpleDB

SimpleDB Hash Table Relational Databases

Domain Hash Table Table

Item Entry Row

Item Name Key Mandatory Primary Key

Attribute Part of the Entry Value Column

@r39132 - #qconlondon2011 21

Terminology

Technology Overview : SimpleDB

@r39132 - #qconlondon2011 22

Soccer Players

Key Value

ab12ocs12v9 First Name = Harold Last Name = Kewell
Nickname = Wizard of
Oz

Teams = Leeds United,
Liverpool, Galatasaray

b24h3b3403b First Name = Pavel Last Name = Nedved
Nickname = Czech
Cannon

Teams = Lazio,
Juventus

cc89c9dc892 First Name = Cristiano Last Name = Ronaldo

Teams = Sporting,
Manchester United,
Real Madrid

SimpleDB’s salient characteristics
•  SimpleDB offers a range of consistency options

•  SimpleDB domains are sparse and schema-less

•  The Key and all Attributes are indexed

•  Each item must have a unique Key

•  An item contains a set of Attributes
•  Each Attribute has a name
•  Each Attribute has a set of values
•  All data is stored as UTF-8 character strings (i.e. no support for types such as numbers or dates)

Technology Overview : SimpleDB

What does the API look like?
�  Manage Domains

�  CreateDomain

�  DeleteDomain
�  ListDomains

�  DomainMetaData
�  Access Data

�  Retrieving Data
�  GetAttributes – returns a single item
�  Select – returns multiple items using SQL syntax

�  Writing Data
�  PutAttributes – put single item

�  BatchPutAttributes – put multiple items
�  Removing Data

�  DeleteAttributes – delete single item
�  BatchDeleteAttributes – delete multiple items

@r39132 - #qconlondon2011 23

Technology Overview : SimpleDB

@r39132 - #qconlondon2011 24

�  Options available on reads and writes
�  Consistent Read

�  Read the most recently committed write

�  May have lower throughput/higher latency/lower
availability

�  Conditional Put/Delete
�  i.e. Optimistic Locking

�  Useful if you want to build a consistent multi-master data
store – you will still require your own anti-entropy

�  We do not use this currently, so we don’t know how it
performs

Translate RDBMS Concepts to Key-Value Store
Concepts

�  Relational Databases are known for relations

�  First, a quick refresher on Normal forms

@r39132 - #qconlondon2011 26

Normalization

NF1 : All occurrences of a record type must contain the same number of fields
-- variable repeating fields and groups are not allowed

NF2 : Second normal form is violated when a non-key field is a fact about a
subset of a key

Violated here

Fixed here

@r39132 - #qconlondon2011 27

Part Warehouse Quantity Warehouse-
Address

Part Warehouse Quantity Warehouse Warehouse-
Address

Normalization

�  Issues

�  Wastes Storage
�  The warehouse address is repeated for every Part-WH pair

�  Update Performance Suffers
�  If the address of a warehouse changes, I must update every part

in that warehouse – i.e. many rows

�  Data Inconsistencies Possible
�  I can update the warehouse address for one Part-WH pair and

miss Parts for the same WH (a.k.a. update anomaly)

�  Data Loss Possible
�  An empty warehouse does not have a row, so the address will be

lost. (a.k.a. deletion anomaly)

@r39132 - #qconlondon2011 28

Normalization

�  RDBMS à KV Store migrations can’t simply accept
denormalization!
�  Especially many-to-many and many-to-one entity relationships

�  Instead, pick your data set candidates carefully!
�  Keep relational data in RDBMS

�  Move key-look-ups to KV stores

�  Luckily for Netflix, most Web Scale data is accessed by Customer,
Video, or both
�  i.e. Key Lookups that do not violate 2NF or 3NF

@r39132 - #qconlondon2011 29

Translate RDBMS Concepts to Key-Value Store
Concepts

�  Aside from relations, relational databases typically
offer the following:
�  Transactions

�  Locks

�  Sequences

�  Triggers

�  Clocks

�  A structured query language (i.e. SQL)

�  Database server-side coding constructs (i.e. PL/SQL)

�  Constraints

@r39132 - #qconlondon2011 30

Translate RDBMS Concepts to Key-Value Store
Concepts

�  Partial or no SQL support (e.g. no Joins, Group Bys, etc…)
�  BEST PRACTICE

�  Carry these out in the application layer for smallish data

�  No relations between domains
�  BEST PRACTICE

�  Compose relations in the application layer

�  No transactions
�  BEST PRACTICE

�  SimpleDB : Conditional Put/Delete (best effort) w/ fixer jobs

�  Cassandra : Batch Mutate + the same column TS for all writes

@r39132 - #qconlondon2011 31

Translate RDBMS Concepts to Key-Value Store
Concepts

�  No schema - This is non-obvious. A query for a misspelled attribute name
will not fail with an error

�  BEST PRACTICE

�  Implement a schema validator in a common data access layer

�  No sequences

�  BEST PRACTICE

�  Sequences are often used as primary keys

�  In this case, use a naturally occurring unique key

�  If no naturally occurring unique key exists, use a UUID

�  Sequences are also often used for ordering

�  Use a distributed sequence generator or rely on client timestamps

@r39132 - #qconlondon2011 32

Translate RDBMS Concepts to Key-Value Store
Concepts

�  No clock operations, PL/SQL, Triggers
�  BEST PRACTICE

�  Clocks : Instead rely on client-generated clocks and run NTP. If using
clocks to determine order, be aware that this is problematic over long
distances.

�  PL/SQL, Triggers : Do without

�  No constraints. Specifically,

�  No uniqueness constraints

�  No foreign key or referential constraints

�  No integrity constraints

�  BEST PRACTICE

�  Applications must implement this functionality

@r39132 - #qconlondon2011 33

SimpleDB

Work-around Issues specific to the chosen KV
store

�  Missing / Strange Functionality
�  No back-up and recovery

�  No native support for types (e.g. Number, Float, Date, etc…)

�  You cannot update one attribute and null out another one for an item
in a single API call

�  Mis-cased or misspelled attribute names in operations fail silently.
Why is SimpleDB case-sensitive?

�  Neglecting "limit N" returns a subset of information. Why does the
absence of an optional parameter not return all of the data?

�  Users need to deal with data set partitioning

�  Beware of Nulls

�  Write throughput not as high as we need for certain use-cases

@r39132 - #qconlondon2011 35

Work-around Issues specific to the chosen KV
store

No Native Types – Sorting, Inequalities Conditions, etc…

�  Since sorting is lexicographical, if you plan on sorting by certain
attributes, then
�  zero-pad logically-numeric attributes

�  e.g. –

�  000000000000000111111 ß this is bigger

�  000000000000000011111

�  use Joda time to store logical dates

�  e.g. –

�  2010-02-10T01:15:32.864Z ß this is more recent

�  2010-02-10T01:14:42.864Z

@r39132 - #qconlondon2011 36

Work-around Issues specific to the chosen KV
store

�  Anti-pattern : Avoid the anti-pattern Select SOME_FIELD_1 from
MY_DOMAIN where SOME_FIELD_2 is null as this is a full domain
scan

�  Nulls are not indexed in a sparse-table

�  BEST PRACTICE

�  Instead, replace this check with a (indexed) flag column called
IS_FIELD_2_NULL: Select SOME_FIELD_1 from
MY_DOMAIN where IS_FIELD_2_NULL = 'Y'

�  Anti-pattern : When selecting data from a domain and sorting by an
attribute, items missing that attribute will not be returned

�  In Oracle, rows with null columns are still returned

�  BEST PRACTICE

�  Use a flag column as shown previously

@r39132 - #qconlondon2011 37

Work-around Issues specific to the chosen KV
store

�  BEST PRACTICE : Aim for high index selectivity when you formulate
your select expressions for best performance

�  SimpleDB select performance is sensitive to index selectivity

�  Index Selectivity

�  Definition : # of distinct attribute values in specified attribute /
of items in domain
�  e.g. Good Index Selectivity (i.e. 1 is the best)

�  A table having 100 records and one of its indexed column has
88 distinct values, then the selectivity of this index is 88 /
100= 0.88

�  e.g. Bad Index Selectivity

�  lf an index on a table of 1000 records had only 5 distinct
values, then the index's selectivity is 5 / 1000 = 0.005

@r39132 - #qconlondon2011 38

Work-around Issues specific to the chosen KV
store

Sharding Domains

�  There are 2 reasons to shard domains
�  You are trying to avoid running into one of the sizing limits

�  e.g. 10GB of space or 1 Billion Attributes

�  You are trying to scale your writes
�  To scale your writes further, use BatchPutAttributes and

BatchDeleteAttributes where possible

@r39132 - #qconlondon2011 39

Create a Bi-directional DC-Cloud Data
Replication Pipeline

�  Home-grown Data Replication Framework known as IR for Item
Replication

�  2 schemes in use currently

�  Polls the main table (a.k.a. Simple IR)

�  Doesn’t capture deletes but easy to implement

�  Polls a journal table that is populated via a trigger on the main
table (a.k.a. Trigger-journaled IR)

�  Captures every CRUD, but requires the development of
triggers

@r39132 - #qconlondon2011 41

Create a Bi-directional DC-Cloud Data
Replication Pipeline

@r39132 - #qconlondon2011 42

Create a Bi-directional DC-Cloud Data
Replication Pipeline

�  How often do we poll Oracle?

�  Every 5 seconds

�  What does the poll query look like?

�  select *

 from QLOG_0

 where LAST_UPDATE_TS > :CHECKPOINT ß Get recent

 and LAST_UPDATE_TS < :NOW_MINUS_30s ß Exclude
most recent

 order by LAST_UPDATE_TS ß Process in order

@r39132 - #qconlondon2011 43

Create a Bi-directional DC-Cloud Data
Replication Pipeline

�  Data Replication Challenges & Best Practices

�  SimpleDB throttles traffic aggressively via 503 HTTP Response
codes (“Service Unavailable”)

�  With Singleton writes, I see 70-120 write TPS/domain

�  IR

�  Shard domains (i.e. partition data sets) to work-around these limits

�  Employs Slow ramp up

�  Uses BatchPutAttributes instead of (Singleton) PutAttributes call

�  Exercises an exponential bounded-back-off algorithm

�  Uses attribute-level replace=false when fork-lifting data

@r39132 - #qconlondon2011 44

Cassandra

Cassandra

Data Model : Cassandra

SimpleDB Cassandra Relational Databases

Key Space “Schema”

Domain Column Family Table

Item Row Row

Item Name Row Key Mandatory Primary Key

Super Columns

Attribute Column Column

@r39132 - #qconlondon2011 47

Terminology

Data Model : Cassandra

@r39132 - #qconlondon2011 48

Data Model : Cassandra

@r39132 - #qconlondon2011 49

Cassandra

APIs for Reads

�  Reads
�  I want to continue watching Tron from where I left off (quorum

reads)?
�  datastore.get(“Netflix”, ”Sid_Anand”, Streaming Bookmarks à

Tron , ConsistencyLevel.QUORUM)

�  When did the True Grit DVD get shipped and returned (fastest
read)?

�  datastore.get_slice(“Netflix”, ”Sid_Anand”, (DVD) Rental History à
5678, [“Ship_TS”, “Return_TS”], ConsistencyLevel.ONE)

�  How many DVD have been shipped to me (fastest read)?
�  datastore.get_count(“Netflix”, ”Sid_Anand”, (DVD) Rental History,

ConsistencyLevel.ONE)

@r39132 - #qconlondon2011 51

APIs for Writes

�  Writes
�  Replicate Netflix Hub Operation Shipments as Batched Writes : True

Grit and Tron shipped together to Sid
�  datastore.batch_mutate

(“Netflix”, mutation_map, ConsistencyLevel.QUORUM)

@r39132 - #qconlondon2011 52

Cassandra

The Promise of Performance

�  High-Availability Writes
�  Write to Commit Log (a.k.a. Write-Ahead Log) & ACK

�  FSYNC the commit log semi-in-frequently

�  Memtable is a Hash Table in RAM à O(1) for reads and
writes

�  Memtable is flushed to SSTable on disk in a background
thread
�  SSTable is a sorted list on a serial device (a.k.a. disk)

�  Compensate for potential slowness at a subset of replicas by
shooting a write-request to all replicas and waiting for the first
success response to come back
�  Requires a lower consistency level on writes (e.g. CL=1)

�  First write to come back allows coordinator to ACK

@r39132 - #qconlondon2011 54

The Promise of Performance

@r39132 - #qconlondon2011 55

The Promise of Performance

�  Manage Reads
�  Rows and Top-Level Columns are stored and indexed in

sorted order giving logarithmic time complexity for look up

�  These help
�  Bloom Filters at the Row Level

�  Key Cache

�  Large OS Page Cache

�  These do not help
�  Disk seeks on reads

�  It gets worse with more row-redundancy across
SSTables à Compaction is a necessary evil

�  Compaction wipes out the Key Cache

@r39132 - #qconlondon2011 56

The Promise of Performance

@r39132 - #qconlondon2011 57

Cassandra

Distribution Model

�  No time here.. Read up on the following:

�  Merkle Trees + Gossip è Anti-Entropy

�  Read-Repair

�  Consistent Hashing

�  SEDA (a.k.a. Staged Event Driven Architecture) paper

�  Dynamo paper

@r39132 - #qconlondon2011 59

Cassandra

Features We Like

@r39132 - #qconlondon2011 61

�  Rich Value Model : Value is a set of columns or super-columns
�  Efficiently address, change, and version individual columns

�  Does not require read-whole-row-before-alter semantics

�  Effectively No Column or Column Family Limits
�  SimpleDB Limits

�  256 Attributes / Item

�  1 Billion Attributes / Domain

�  1 KB Attribute Value Length

�  Growing a Cluster a.k.a. Resharding a KeySpace is Manageable
�  SimpleDB

�  Users must solve this problem : application code needs to do the
migration

Features We Like

@r39132 - #qconlondon2011 62

�  Better handing of Types
�  SimpleDB

�  Everything is a UTF-8 string

�  Cassandra

�  Native Support for Key and Column Key types (for sorting)

�  Column values are never looked at and are just []byte

�  Open Source & Java
�  Implement our own Backup & Recovery

�  Implement our own Replication Strategy

�  We know Java best, though we think Erlang is cool, with the
exception of the fact that each digit in an integer is 1 byte of
memory!!!

�  We can make it work in AWS

Features We Like

@r39132 - #qconlondon2011 63

�  No Update-Delete Anomalies
�  Specify a batch mutation with a delete and a mutation for a single

row_key/column-family pair in a single batch

�  Must use same column Time Stamp

�  Tunable Consistency/Availability Tradeoff
�  Strong Consistency

�  Quorum Reads & Writes

�  Eventual Consistency

�  R=1, W=1 (fastest read and fastest write)

�  R=1 , W=QUORUM (fastest read and potentially-slower write)

�  R=QUORUM, W=1 (potentially-slower read and fastest write)

Cassandra

Where Are We With This List?

�  KV Store Missing / Strange Functionality
�  No back-up and recovery

�  No native support for types (e.g. Number, Float, Date, etc…)

�  You cannot update one attribute and null out another one for an item
in a single API call

�  Mis-cased or misspelled attribute names in operations fail silently.

�  Neglecting "limit N" returns a subset of information. Why does the
absence of an optional parameter not return all of the data?

�  Users need to deal with data set partitioning

�  Beware of Nulls

�  Write throughput not as high as we need for certain use-cases

@r39132 - #qconlondon2011 65

Pick a Data Store in the Cloud

An ideal storage solution should have the following features:
¨  Hosted

þ  Managed Distribution Model

þ  Works in AWS

þ  AP from CAP

þ  Handles a majority of use-cases accessing high-growth, high-
traffic data
þ  Specifically, key access by customer id, movie id, or both

þ  Back-up & Recovery

þ  Multi-Region

@r39132 - #qconlondon2011 66

