
Node.js:
Asynchronous I/O for

Fun and Pro!t
Stefan Tilkov @ QCon London 2011

Friday, March 11, 2011

Stefan Tilkov
@stilkov

stefan.tilkov@innoq.com

http://www.innoq.com

Friday, March 11, 2011

Concurrent Request Processing

Friday, March 11, 2011

Friday, March 11, 2011

Friday, March 11, 2011

Friday, March 11, 2011

Friday, March 11, 2011

Friday, March 11, 2011

Friday, March 11, 2011

read request

Friday, March 11, 2011

read request
parse request

Friday, March 11, 2011

read request
parse request

process

Friday, March 11, 2011

read request
parse request

process
send backend request

Friday, March 11, 2011

read request
parse request

process
send backend request
read backend answer

Friday, March 11, 2011

read request
parse request

process
send backend request
read backend answer

process

Friday, March 11, 2011

read request
parse request

process
send backend request
read backend answer

process
format response

Friday, March 11, 2011

read request
parse request

process
send backend request
read backend answer

process
format response
send response

Friday, March 11, 2011

read request
parse request

process
send backend request
read backend answer

process
format response
send response

Friday, March 11, 2011

Blocking I/O Problems

Friday, March 11, 2011

Blocking I/O Problems

Thread starvation

Friday, March 11, 2011

Blocking I/O Problems

Thread starvation

Memory utilization

Friday, March 11, 2011

Blocking I/O Problems

Thread starvation

Memory utilization

External dependencies

Friday, March 11, 2011

Blocking I/O Problems

Thread starvation

Memory utilization

External dependencies

Cascading problems

Friday, March 11, 2011

Blocking I/O Problems

Thread starvation

Memory utilization

External dependencies

Cascading problems

Non-streaming approach

Friday, March 11, 2011

Kernel

User
Space

Friday, March 11, 2011

Event Loop

while (true)
 ready_channels = select(io_channels)
 for (channel in ready_channels)
 performIO(channel)

Friday, March 11, 2011

Async I/O Characteristics

Friday, March 11, 2011

Async I/O Characteristics

Program always running

Friday, March 11, 2011

Async I/O Characteristics

Program always running

I/O-bound calls never block

Friday, March 11, 2011

Async I/O Characteristics

Program always running

I/O-bound calls never block

Kernel handles I/O

Friday, March 11, 2011

Async I/O Characteristics

Program always running

I/O-bound calls never block

Kernel handles I/O

Noti!cation via events

Friday, March 11, 2011

Async I/O Characteristics

Program always running

I/O-bound calls never block

Kernel handles I/O

Noti!cation via events

Used for timers, !le I/O, net I/O, ...

Friday, March 11, 2011

requests/second

http://blog.webfaction.com/a-little-holiday-present

Friday, March 11, 2011

memory

http://blog.webfaction.com/a-little-holiday-present

Friday, March 11, 2011

select()

poll()

epoll()

kqueue()

/dev/poll

aio_*()

Friday, March 11, 2011

java.nio

.NET I/O Completion Ports

Friday, March 11, 2011

Async I/O Perception

Friday, March 11, 2011

Async I/O Perception

Not widely known

Friday, March 11, 2011

Async I/O Perception

Not widely known

Low level

Friday, March 11, 2011

Async I/O Perception

Not widely known

Low level

Hard to use

Friday, March 11, 2011

Async I/O Perception

Not widely known

Low level

Hard to use

Exception rather than rule

Friday, March 11, 2011

JavaScript

Friday, March 11, 2011

JavaScript Perception

Friday, March 11, 2011

JavaScript Perception

“Toy language”

Friday, March 11, 2011

JavaScript Perception

“Toy language”

Incompatible

Friday, March 11, 2011

JavaScript Perception

“Toy language”

Incompatible

Inherent design problems

Friday, March 11, 2011

JavaScript Perception

“Toy language”

Incompatible

Inherent design problems

Low Performance

Friday, March 11, 2011

http://commons.wikimedia.org/wiki/File:Audi_S5_V8_FSI_engine.jpg

Friday, March 11, 2011

Friday, March 11, 2011

http://commons.wikimedia.org/wiki/File:Ateles_paniscus_-Brazil-8.jpg

Friday, March 11, 2011

Friday, March 11, 2011

The JavaScript Arms Race

Friday, March 11, 2011

Friday, March 11, 2011

Friday, March 11, 2011

http://oreilly.com/catalog/9780596517748

Friday, March 11, 2011

Friday, March 11, 2011

JavaScript Today

Friday, March 11, 2011

JavaScript Today

Popular & widely used

Friday, March 11, 2011

JavaScript Today

Popular & widely used

O"en mandatory

Friday, March 11, 2011

JavaScript Today

Popular & widely used

O"en mandatory

Fast

Friday, March 11, 2011

JavaScript Today

Popular & widely used

O"en mandatory

Fast

Compatible

Friday, March 11, 2011

JavaScript Today

Popular & widely used

O"en mandatory

Fast

Compatible

Best practices

Friday, March 11, 2011

Node.js

Friday, March 11, 2011

libev libeiov8 http_parser c_ares

Node.js Architecture

Friday, March 11, 2011

libev libeiov8 http_parser c_ares

Node.js Architecture

Network/Platform layer (C)

Friday, March 11, 2011

libev libeiov8 http_parser c_ares

Node.js Architecture

Network/Platform layer (C)

API (JavaScript)

Friday, March 11, 2011

High-performance network
runtime, using JavaScript as

a high-level DSL

Friday, March 11, 2011

echo.js

var net = require('net');

var server = net.createServer(function (socket) {
 socket.write("Echo server\r\n");
 socket.pipe(socket);
})

server.listen(8124, "127.0.0.1");

Code samples: http://github.com/stilkov/node-samples

Friday, March 11, 2011

echo-upcase.js

var net = require('net');

var server = net.createServer(function (socket) {
 socket.write("Echo server\r\n");
 socket.setEncoding('ascii');
 socket.on('data', function(data) {
 socket.write(data.toUpperCase());
 });
});

server.listen(8124, "127.0.0.1");

Friday, March 11, 2011

var sys = require("sys"), http = require("http"), url = require("url"),
 path = require("path"), fs = require("fs");

var dir = process.argv[2] || './public';
var port = parseFloat(process.argv[3]) || 8080;
sys.log('Serving files from ' + dir + ', port is ' + port);

http.createServer(function(request, response) {
 var uri = url.parse(request.url).pathname;
 var filename = path.join(process.cwd(), dir, uri);
 path.exists(filename, function(exists) {
 if(exists) {
 fs.readFile(filename, function(err, data) {
 response.writeHead(200);
 response.end(data);
 });
 } else {
 sys.log('File not found: ' + filename);
 response.writeHead(404);
 response.end();
 }
 });
}).listen(port);

!le-server.js
Friday, March 11, 2011

Concurrency Level: 100
Time taken for tests: 6.000 seconds
Complete requests: 10000
Failed requests: 0
Write errors: 0
Keep-Alive requests: 0
Total transferred: 710781 bytes
HTML transferred: 150165 bytes
Requests per second: 1666.72 [#/sec] (mean)
Time per request: 59.998 [ms] (mean)
Time per request: 0.600 [ms] (mean, across all concurrent requests)
Transfer rate: 115.69 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 8 8.3 5 57
Processing: 1 51 44.4 40 307
Waiting: 0 43 43.5 30 302
Total: 1 59 44.8 50 316

Percentage of the requests served within a certain time (ms)
 50% 50
 66% 58
 75% 68
 80% 73
 90% 112
 95% 174
 98% 206
 99% 224
 100% 316 (longest request)

Friday, March 11, 2011

!le-server-md5.js

http.createServer(function(request, response) {
 var uri = url.parse(request.url).pathname;
 var filename = path.join(process.cwd(), dir, uri);
 sys.log('Serving file ' + filename);
 path.exists(filename, function(exists) {
 if(exists) {
 fs.readFile(filename, function(err, data) {
 var hash = crypto.createHash('md5');
 hash.update(data);
 response.writeHead(200,
 { 'Content-Type': 'text/plain',
 'Content-MD5': hash.digest('base64') }
);
 response.end(data);
 });
 } else {
 response.writeHead(404);
 response.end();
 }
 });
}).listen(port);

Friday, March 11, 2011

HTTP Chunking

Friday, March 11, 2011

HTTP/1.0

Client Server

connect

Friday, March 11, 2011

HTTP/1.0

Client Server

connect
send request

Friday, March 11, 2011

HTTP/1.0

Client Server

connect
send request

send response

Friday, March 11, 2011

HTTP/1.0

Client Server

connect

close connection

send request
send response

Friday, March 11, 2011

HTTP/1.0

Client Serverconnect

connect

close connection

send request
send response

Friday, March 11, 2011

HTTP/1.0

Client Serverconnect
send request

connect

close connection

send request
send response

Friday, March 11, 2011

HTTP/1.0

Client Serverconnect
send request

send response data

connect

close connection

send request
send response

Friday, March 11, 2011

HTTP/1.0

Client Serverconnect
send request

send response data
...

connect

close connection

send request
send response

Friday, March 11, 2011

HTTP/1.0

Client Serverconnect
send request

send response data

send response data
...

connect

close connection

send request
send response

Friday, March 11, 2011

HTTP/1.0

Client Serverconnect
send request

send response data

send response data
close connection

...

connect

close connection

send request
send response

Friday, March 11, 2011

HTTP/1.1: Content-length

Client Server

Friday, March 11, 2011

HTTP/1.1: Content-length

Client Server

connect

Friday, March 11, 2011

HTTP/1.1: Content-length

Client Server

connect
Connection: keep-alive

Friday, March 11, 2011

HTTP/1.1: Content-length

Client Server

connect

send request

Connection: keep-alive

Friday, March 11, 2011

HTTP/1.1: Content-length

Client Server

connect

send request
send response

Connection: keep-alive

Friday, March 11, 2011

Content-length: xxx

HTTP/1.1: Content-length

Client Server

connect

send request
send response

Connection: keep-alive

Friday, March 11, 2011

...
Content-length: xxx

HTTP/1.1: Content-length

Client Server

connect

send request
send response

Connection: keep-alive

Friday, March 11, 2011

...
Content-length: xxx

HTTP/1.1: Content-length

Client Server

connect

send request
send response

send request

Connection: keep-alive

Friday, March 11, 2011

...
Content-length: xxx

HTTP/1.1: Content-length

Client Server

connect

send request
send response

send response
send request

Connection: keep-alive

Friday, March 11, 2011

...
Content-length: xxx

Content-length: yyy

HTTP/1.1: Content-length

Client Server

connect

send request
send response

send response
send request

Connection: keep-alive

Friday, March 11, 2011

...
Content-length: xxx

Content-length: yyy

HTTP/1.1: Content-length

Client Server

connect

send request
send response

send response

close connection

send request

Connection: keep-alive

Friday, March 11, 2011

HTTP/1.1: Transfer-encoding: chunked

Client Server

Friday, March 11, 2011

HTTP/1.1: Transfer-encoding: chunked

Client Server

connect
Connection: keep-alive

Friday, March 11, 2011

HTTP/1.1: Transfer-encoding: chunked

Client Server

send request

connect
Connection: keep-alive

Friday, March 11, 2011

HTTP/1.1: Transfer-encoding: chunked

Client Server

send request
send response data

connect
Connection: keep-alive

Friday, March 11, 2011

HTTP/1.1: Transfer-encoding: chunked

Client Server

send request
send response data

connect
Connection: keep-alive

Transfer-encoding: chunked

Friday, March 11, 2011

HTTP/1.1: Transfer-encoding: chunked

xxx↵[data]Client Server

send request
send response data

connect
Connection: keep-alive

Transfer-encoding: chunked

Friday, March 11, 2011

HTTP/1.1: Transfer-encoding: chunked

xxx↵[data]Client Server

send request
send response data

connect
Connection: keep-alive

xxx↵[data]
send response data

Transfer-encoding: chunked

Friday, March 11, 2011

HTTP/1.1: Transfer-encoding: chunked

xxx↵[data]Client Server

send request
send response data

connect
Connection: keep-alive

xxx↵[data]
send response data

0↵
send response data

Transfer-encoding: chunked

Friday, March 11, 2011

HTTP/1.1: Transfer-encoding: chunked

xxx↵[data]Client Server

send request
send response data

close connection

connect
Connection: keep-alive

xxx↵[data]
send response data

0↵
send response data

Transfer-encoding: chunked

Friday, March 11, 2011

stream-!le-server.js

http.createServer(function(request, response) {
 var uri = url.parse(request.url).pathname;
 var filename = path.join(process.cwd(), dir, uri);
 path.exists(filename, function(exists) {
 if(exists) {
 f = fs.createReadStream(filename);
 f.on('open', function() {
 response.writeHead(200);
 });

 f.on('data', function(chunk) {
 response.write(chunk);
 });

 f.on('error', function(err) {
 // ...
 });

 f.on('end', function() {
 response.end();
 });
 } else {
 response.writeHead(404);
- response.end();
 }
 });
}).listen(port);

Friday, March 11, 2011

hash-!le-stream.js (see stream-!le-server-md5.js)

var hashFile = function(filename, cb) {
 path.exists(filename, function(exists) {
 if(exists) {
 r = fs.createReadStream(filename);
 var hash = crypto.createHash('md5');
 r.on('data', function(data) {
 hash.update(data);
 });
 r.on('end', function() {
 cb(hash.digest('base64'));
 });
 } else {
 throw 'File ' + filename + ' does not exist or can not be read';
 }
 });
}

var filename = path.join(process.argv[2]);
hashFile(filename, function(hash) {
 console.log(filename + ': ' + hash);
});

Friday, March 11, 2011

proxy.js

var options = function(request) {
 // ...
}

http.createServer(function(request, response) {
 sys.log("--> " + request.url);
 var remoteRequest = http.request(options(request), function (remoteResponse) {
 response.writeHead(remoteResponse.statusCode, remoteResponse.headers);
 remoteResponse.on('data', function (chunk) {
 response.write(chunk);
 });
 remoteResponse.on('end', function () {
 sys.log("<-- " + response.statusCode + " " + request.url);
 response.end();
 });
 });
 request.on('data', function (chunk) {
 remoteRequest.write(chunk);
 });
 request.on('end', function () {
 remoteRequest.end();
 });
}).listen(port);

Friday, March 11, 2011

proxy-pump.js

http.createServer(function(request, response) {
 sys.log("--> " + request.url);
 var remoteRequest = http.request(options(request), function (remoteResponse) {
 response.writeHead(remoteResponse.statusCode, remoteResponse.headers);
 remoteResponse.on('end', function () {
 sys.log("<-- " + response.statusCode + " " + request.url);
 });
 util.pump(remoteResponse, response);
 });
 util.pump(request, remoteRequest);
}).listen(port);

Friday, March 11, 2011

Asynchronous
Programming

Challenges

Friday, March 11, 2011

or:
Why Programming

with Callbacks Sucks

Friday, March 11, 2011

Friday, March 11, 2011

var bold = function(text) {
 return text.bold();
};

var capitalize = function(text) {
 return text.toUpperCase();
};

console.log("Synchronous:");
var result1 = capitalize("Hello, synchronous world.");
var result2 = bold(result1);
console.log("Sync result is " + result2);

async1.js
Friday, March 11, 2011

var boldAsync = function(text, callback) {
 setTimeout(function (text) {
 callback(text.bold());
 }, 100, text);
};

var capitalizeAsync = function(text, callback) {
 setTimeout(function (text) {
 callback(text.toUpperCase());
 }, 100, text);
};

async1.js
Friday, March 11, 2011

var boldAsync = function(text, callback) {
 setTimeout(function (text) {
 callback(text.bold());
 }, 100, text);
};

var capitalizeAsync = function(text, callback) {
 setTimeout(function (text) {
 callback(text.toUpperCase());
 }, 100, text);
};

async1.js

console.log("Asynchronous:");
capitalizeAsync("Hello, asynchronous world.", function(result1) {
 boldAsync(result1, function(result2) {
 console.log("Async result is " + result2);
 });
});

Friday, March 11, 2011

async2.js

try {
 console.log("Synchronous:");
 var result1 = capitalize(null);
 var result2 = bold(result1);
 console.log("Sync result is " + result2);
} catch (exception) {
 console.log("Sync exception caught: " + exception);
}

Friday, March 11, 2011

async2.js

try {
 console.log("Asynchronous:");
 capitalizeAsync(text, function(result1) {
 boldAsync(result1, function(result2) {
 console.log("Async result is " + result2);
 });
 });
} catch (exception) {
 console.log("Async exception caught: " + exception);
}

Friday, March 11, 2011

async2.js

try {
 console.log("Asynchronous:");
 capitalizeAsync(text, function(result1) {
 boldAsync(result1, function(result2) {
 console.log("Async result is " + result2);
 });
 });
} catch (exception) {
 console.log("Async exception caught: " + exception);
}

// bad, don't do this

Friday, March 11, 2011

async3.js

var boldAsync = function(text, callback) {
 setTimeout(function (text) {
 try {
 callback(null, text.bold());
 } catch (exception) {
 callback(exception);
 }
 }, 100, text);
};

var capitalizeAsync = function(text, callback) {
 setTimeout(function (text) {
 try {
 callback(null, text.toUpperCase());
 } catch (exception) {
 callback(exception);
 }
 }, 100, text);
};

Friday, March 11, 2011

async3.js

capitalizeAsync(text, function(err, result1) {
 if (!err) {
 boldAsync(result1, function(err, result2) {
 if (!err) {
 console.log("Async result is " + result2);
 } else {
 console.log("Handling async error: " + err);
 }
 });
 } else {
 console.log("Handling async error: " + err);
 }
});

Friday, March 11, 2011

async3.js

var handleError = function(err, fn) {
 if (err) {
 console.log("Handling async error: " + err);
 } else {
 fn();
 }
}

capitalizeAsync(text, function(err, result1) {
 handleError(err, function () {
 boldAsync(result1, function(err, result2) {
 handleError(err, function () {
 console.log("Async result is " + result2);
 });
 });
 });
});

Friday, March 11, 2011

async3.js

var step = require("step");
step(
 function () {
 capitalizeAsync(text, this);
 },
 function (err, result) {
 if (err) throw err;
 boldAsync(result, this);
 },
 function(err, result) {
 if (err) {
 console.log("Handling async error: " + err);
 } else {
 console.log("Async result is " + result);
 }
 }
);

Friday, March 11, 2011

parallel1.js

var words = ['one', 'two', 'three', 'four', 'five'];
var upcasedWords = [];

words.forEach(function (word) {
 capitalize(word, function(err, word) {
 upcasedWords.push(word);
 });
});
console.log('Done, upcased words: <'
 + upcasedWords.join(' ') + '>');

Friday, March 11, 2011

parallel1.js

var words = ['one', 'two', 'three', 'four', 'five'];
var upcasedWords = [];

words.forEach(function (word) {
 capitalize(word, function(err, word) {
 upcasedWords.push(word);
 });
});
console.log('Done, upcased words: <'
 + upcasedWords.join(' ') + '>');

// bad, don't do this

Friday, March 11, 2011

parallel1.js

var count = words.length;
words.forEach(function (word) {
 capitalize(word, function(err, word) {
 upcasedWords.push(word);
 if (--count === 0) {
 console.log('Done, upcased words: <'
 + upcasedWords.join(' ') + '>');
 }
 });
});

Friday, March 11, 2011

parallel2.js

var words = ['one', 'two', 'three', 'four', 'five'];

step(
 function () {
 var i, length;
 for (i = 0, length = words.length; i < length; i++) {
 capitalize(words[i], this.parallel());
 }
 },

 function (err) {
 if (err) throw err;
 var upcasedWords = Array.prototype.slice.call(arguments);
 upcasedWords.shift();
 console.log('Done, upcased words: <'
 + upcasedWords.join(' ') + '>');
 }
);

Friday, March 11, 2011

Tools & Ecosystem

Friday, March 11, 2011

Friday, March 11, 2011

npm node package manager

Connect Asynchronous, low-level HTTP handler
framework inspired by Rack/WSGI

Express Sinatra-inspired Web framework on top
of Connect

multi-node Spawns child processes sharing
listeners

node-inspector Visual debugger for Node.js

>700 more modules see https://github.com/joyent/node/
wiki/modules

Friday, March 11, 2011

multi-!le-server.js

var multi = require("multi-node");

var server = http.createServer(function(request, response) {
 var uri = url.parse(request.url).pathname;
 var filename = path.join(process.cwd(), dir, uri);
 path.exists(filename, function(exists) {
 if(exists) {
 fs.readFile(filename, function(err, data) {
 if (err) {
 sys.log('Error serving file ' + filename + ' ' + err);
 sys.log('request: ' + uri);
 }
 response.writeHead(200, {
 'X-Node-Id': process.pid
 });
 response.end(data);
 });
 } else {
 response.writeHead(404);
 response.end();
 }
 });
});

var nodes = multi.listen({ port: port, nodes: 10 }, server);
sys.log("Server " + process.pid + " running at http://localhost:" + port);

Friday, March 11, 2011

Summary

Friday, March 11, 2011

Node.js popularizes
the “right way”

of network programming

Friday, March 11, 2011

JavaScript doesn’t suck
as much as you think

Friday, March 11, 2011

There’s a smart and
active community

Friday, March 11, 2011

Node.js is fun to use!

Friday, March 11, 2011

Thank you!

Q&A

Friday, March 11, 2011

