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Kernel

User 
Space
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Event Loop

while (true) 
  ready_channels = select(io_channels)
  for (channel in ready_channels) 
    performIO(channel)
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Async I/O Characteristics

Program always running

I/O-bound calls never block

Kernel handles I/O

Noti!cation via events

Used for timers, !le I/O, net I/O, ...
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requests/second

http://blog.webfaction.com/a-little-holiday-present
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memory

http://blog.webfaction.com/a-little-holiday-present
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select()

poll()

epoll()

kqueue()

/dev/poll

aio_*()

Friday, March 11, 2011



java.nio

.NET I/O Completion Ports

Friday, March 11, 2011



Async I/O Perception

Friday, March 11, 2011



Async I/O Perception

Not widely known

Friday, March 11, 2011



Async I/O Perception

Not widely known

Low level

Friday, March 11, 2011



Async I/O Perception

Not widely known

Low level

Hard to use

Friday, March 11, 2011



Async I/O Perception

Not widely known

Low level

Hard to use

Exception rather than rule

Friday, March 11, 2011



JavaScript

Friday, March 11, 2011



JavaScript Perception

Friday, March 11, 2011



JavaScript Perception

“Toy language”

Friday, March 11, 2011



JavaScript Perception

“Toy language”

Incompatible

Friday, March 11, 2011



JavaScript Perception

“Toy language”

Incompatible

Inherent design problems

Friday, March 11, 2011



JavaScript Perception

“Toy language”

Incompatible

Inherent design problems

Low Performance

Friday, March 11, 2011
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http://oreilly.com/catalog/9780596517748
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libev libeiov8 http_parser c_ares

Node.js Architecture

Network/Platform layer (C)

API (JavaScript)
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High-performance network 
runtime, using JavaScript as 

a high-level DSL
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echo.js

var net = require('net');

var server = net.createServer(function (socket) {
  socket.write("Echo server\r\n");
  socket.pipe(socket);
})

server.listen(8124, "127.0.0.1");

Code samples:  http://github.com/stilkov/node-samples
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echo-upcase.js

var net = require('net');

var server = net.createServer(function (socket) {
  socket.write("Echo server\r\n");
  socket.setEncoding('ascii');
  socket.on('data', function(data) {
    socket.write(data.toUpperCase());
  });
});

server.listen(8124, "127.0.0.1");
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var sys = require("sys"), http = require("http"), url = require("url"),
    path = require("path"),  fs = require("fs");

var dir = process.argv[2] || './public';
var port = parseFloat(process.argv[3]) || 8080;
sys.log('Serving files from ' + dir + ', port is ' + port);

http.createServer(function(request, response) {
    var uri = url.parse(request.url).pathname;
    var filename = path.join(process.cwd(), dir, uri);
    path.exists(filename, function(exists) {
        if(exists) {
            fs.readFile(filename, function(err, data) {
                response.writeHead(200);
                response.end(data);
            });
        } else {
            sys.log('File not found: ' + filename);
            response.writeHead(404);
            response.end();
        }
    });
}).listen(port);

!le-server.js
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Concurrency Level:      100
Time taken for tests:   6.000 seconds
Complete requests:      10000
Failed requests:        0
Write errors:           0
Keep-Alive requests:    0
Total transferred:      710781 bytes
HTML transferred:       150165 bytes
Requests per second:    1666.72 [#/sec] (mean)
Time per request:       59.998 [ms] (mean)
Time per request:       0.600 [ms] (mean, across all concurrent requests)
Transfer rate:          115.69 [Kbytes/sec] received

Connection Times (ms)
              min  mean[+/-sd] median   max
Connect:        0    8   8.3      5      57
Processing:     1   51  44.4     40     307
Waiting:        0   43  43.5     30     302
Total:          1   59  44.8     50     316

Percentage of the requests served within a certain time (ms)
  50%     50
  66%     58
  75%     68
  80%     73
  90%    112
  95%    174
  98%    206
  99%    224
 100%    316 (longest request)
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!le-server-md5.js

http.createServer(function(request, response) {
  var uri = url.parse(request.url).pathname;
  var filename = path.join(process.cwd(), dir, uri);
  sys.log('Serving file ' + filename);
  path.exists(filename, function(exists) {
    if(exists) {
      fs.readFile(filename, function(err, data) {
        var hash = crypto.createHash('md5');
        hash.update(data);
        response.writeHead(200, 
             { 'Content-Type': 'text/plain',
               'Content-MD5': hash.digest('base64') }
        );
        response.end(data);
      });
    } else {
      response.writeHead(404);
      response.end();
    }
  });
}).listen(port);
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HTTP Chunking
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stream-!le-server.js

http.createServer(function(request, response) {
    var uri = url.parse(request.url).pathname;
    var filename = path.join(process.cwd(), dir, uri);
    path.exists(filename, function(exists) {
        if(exists) {
            f = fs.createReadStream(filename);
            f.on('open', function() {
                response.writeHead(200);
            });
            
            f.on('data', function(chunk) {
                response.write(chunk);
            });

            f.on('error', function(err) { 
                // ...
            }); 
            
            f.on('end', function() { 
                response.end();
            });                             
        } else {
            response.writeHead(404);
-           response.end();
        }
    });
}).listen(port);
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hash-!le-stream.js (see stream-!le-server-md5.js)

var hashFile = function(filename, cb) {
  path.exists(filename, function(exists) {
    if(exists) {
      r = fs.createReadStream(filename);
      var hash = crypto.createHash('md5');
      r.on('data', function(data) {
        hash.update(data);
      });
      r.on('end', function() {
        cb(hash.digest('base64'));
      });
    } else {
      throw 'File ' + filename + ' does not exist or can not be read';
    }
  });
}

var filename = path.join(process.argv[2]);
hashFile(filename, function(hash) {
  console.log(filename + ': ' + hash);
});       
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proxy.js

var options = function(request) {
  // ...
}

http.createServer(function(request, response) {
  sys.log("--> " + request.url);
  var remoteRequest = http.request(options(request), function (remoteResponse) {
    response.writeHead(remoteResponse.statusCode, remoteResponse.headers);
    remoteResponse.on('data', function (chunk) {
      response.write(chunk);
    });
    remoteResponse.on('end', function () {
      sys.log("<-- " + response.statusCode + " " +  request.url);
      response.end();
    });
  });
  request.on('data', function (chunk) {
    remoteRequest.write(chunk);
  });
  request.on('end', function () {
    remoteRequest.end();
  });
}).listen(port);
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proxy-pump.js

http.createServer(function(request, response) {
  sys.log("--> " + request.url);
  var remoteRequest = http.request(options(request), function (remoteResponse) {
    response.writeHead(remoteResponse.statusCode, remoteResponse.headers);
    remoteResponse.on('end', function () {
      sys.log("<-- " + response.statusCode + " " +  request.url);
    });
    util.pump(remoteResponse, response);
  });
  util.pump(request, remoteRequest);
}).listen(port);
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Asynchronous
Programming

Challenges
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or:
Why Programming

with Callbacks Sucks
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var bold = function(text) {
  return text.bold();
};

var capitalize = function(text) {
  return text.toUpperCase();
};

console.log("Synchronous:");
var result1 = capitalize("Hello, synchronous world.");
var result2 = bold(result1);
console.log("Sync result is " + result2);

async1.js
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var boldAsync = function(text, callback) {
  setTimeout(function (text) {
    callback(text.bold());
  }, 100, text);
};

var capitalizeAsync = function(text, callback) {
  setTimeout(function (text) {
    callback(text.toUpperCase());
  }, 100, text);
};

async1.js
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var boldAsync = function(text, callback) {
  setTimeout(function (text) {
    callback(text.bold());
  }, 100, text);
};

var capitalizeAsync = function(text, callback) {
  setTimeout(function (text) {
    callback(text.toUpperCase());
  }, 100, text);
};

async1.js

console.log("Asynchronous:");
capitalizeAsync("Hello, asynchronous world.", function(result1) {
  boldAsync(result1, function(result2) {
    console.log("Async result is " + result2);
  });
});
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async2.js

try {
  console.log("Synchronous:");
  var result1 = capitalize(null);
  var result2 = bold(result1);
  console.log("Sync result is " + result2);
} catch (exception) {
  console.log("Sync exception caught: " + exception);
}
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async2.js

try {
  console.log("Asynchronous:");
  capitalizeAsync(text, function(result1) {
    boldAsync(result1, function(result2) {
      console.log("Async result is " + result2);
    });
  });
} catch (exception) {
  console.log("Async exception caught: " + exception);
}
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async2.js

try {
  console.log("Asynchronous:");
  capitalizeAsync(text, function(result1) {
    boldAsync(result1, function(result2) {
      console.log("Async result is " + result2);
    });
  });
} catch (exception) {
  console.log("Async exception caught: " + exception);
}

// bad, don't do this
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async3.js

var boldAsync = function(text, callback) {
  setTimeout(function (text) {
    try {
      callback(null, text.bold());
    } catch (exception) {
      callback(exception);
    }
  }, 100, text);
};

var capitalizeAsync = function(text, callback) {
  setTimeout(function (text) {
    try {
      callback(null, text.toUpperCase());
    } catch (exception) {
      callback(exception);
    }
  }, 100, text);
};
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async3.js

capitalizeAsync(text, function(err, result1) {
  if (!err) {
    boldAsync(result1, function(err, result2) {
      if (!err) {
        console.log("Async result is " + result2);
      } else {
        console.log("Handling async error: " + err);
      }
    });
  } else {
    console.log("Handling async error: " + err);
  }
});
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async3.js

var handleError = function(err, fn) {
  if (err) {
    console.log("Handling async error: " + err);
  } else {
    fn();
  }
}

capitalizeAsync(text, function(err, result1) {
  handleError(err, function () {
    boldAsync(result1, function(err, result2) {
      handleError(err, function () {
        console.log("Async result is " + result2);
      });
    });
  });
});
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async3.js

var step = require("step");
step(
  function () { 
    capitalizeAsync(text, this);
  },
  function (err, result) {
    if (err) throw err;
    boldAsync(result, this);
  },
  function(err, result) {
    if (err) {
      console.log("Handling async error: " + err);
    } else {
      console.log("Async result is " + result);
    }
  }
);
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parallel1.js

var words = ['one', 'two', 'three', 'four', 'five'];
var upcasedWords = [];

words.forEach(function (word) {
  capitalize(word, function(err, word) {
    upcasedWords.push(word);
  });
});
console.log('Done, upcased words: <'
            + upcasedWords.join(' ') + '>');

Friday, March 11, 2011



parallel1.js

var words = ['one', 'two', 'three', 'four', 'five'];
var upcasedWords = [];

words.forEach(function (word) {
  capitalize(word, function(err, word) {
    upcasedWords.push(word);
  });
});
console.log('Done, upcased words: <'
            + upcasedWords.join(' ') + '>');

// bad, don't do this
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parallel1.js

var count = words.length;
words.forEach(function (word) {
  capitalize(word, function(err, word) {
    upcasedWords.push(word);
    if (--count === 0) {
      console.log('Done, upcased words: <'
                   + upcasedWords.join(' ') + '>');  
    }
  });
});
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parallel2.js

var words = ['one', 'two', 'three', 'four', 'five'];

step(
  function () {
    var i, length;
    for (i = 0, length = words.length; i < length; i++) {
      capitalize(words[i], this.parallel());
    }
  },

  function (err) {
    if (err) throw err;
    var upcasedWords = Array.prototype.slice.call(arguments);
    upcasedWords.shift();
    console.log('Done, upcased words: <'
                + upcasedWords.join(' ') + '>');  
  }
);
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Tools & Ecosystem
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npm node package manager

Connect Asynchronous, low-level HTTP handler 
framework inspired by Rack/WSGI

Express Sinatra-inspired Web framework on top 
of Connect

multi-node Spawns child processes sharing 
listeners

node-inspector Visual debugger for Node.js

>700 more modules see https://github.com/joyent/node/
wiki/modules
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multi-!le-server.js

var multi = require("multi-node");

var server = http.createServer(function(request, response) {
  var uri = url.parse(request.url).pathname;
  var filename = path.join(process.cwd(), dir, uri);
  path.exists(filename, function(exists) {
    if(exists) {
      fs.readFile(filename, function(err, data) {
        if (err) {
          sys.log('Error serving file ' + filename + ' ' + err);
          sys.log('request: ' + uri);
        }
        response.writeHead(200, {
          'X-Node-Id': process.pid
        });
        response.end(data);
      });                           
    } else {
      response.writeHead(404);
      response.end();
    }
  });
});

var nodes = multi.listen({ port: port, nodes: 10 }, server); 
sys.log("Server " + process.pid + " running at http://localhost:" + port);
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Summary
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Node.js popularizes
the “right way”

of network programming
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JavaScript doesn’t suck 
as much as you think
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There’s a smart and 
active community
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Node.js is fun to use!
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Thank you!

Q&A
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