
Let It Crash...
Except When You Shouldn't

Steve Vinoski
Verivue, Inc.

Westford, MA USA
vinoski@ieee.org

QCon London
10 March 2011

1

mailto:vinoski@ieee.org
mailto:vinoski@ieee.org

About This Talk

Explore Erlang’s “Let It Crash”
approach to failure handling

I don’t assume you know Erlang, so
there’ll be some explanation of some
core Erlang concepts

Focus on a couple problem areas that
aren’t well documented and that you
usually learn the hard way

2

Fail Constantly
Netflix “Chaos Monkey”

Kills randomly kills things within
Netflix’s AWS infrastructure to make
sure things keep running even with
failures

“Best way to avoid failure is to fail
constantly”
http://techblog.netflix.com/2010/12/5-lessons-
weve-learned-using-aws.html

3

http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html

Write code to solve the actual problem

Then try to think of everything that
can go wrong, especially with inputs

And then write defensive code to catch
and handle all possible errors and
exceptions

Defensive Programming

4

Defensive Holes
The more code you have, the more
bugs you have

Obscures the business logic, making it
hard to read, extend, and maintain

Error handling code is often
incomplete and inadequately tested

It’s hard to defend against every
possibility

5

Let It Crash

From Joe Armstrong’s doctoral thesis:

Let some other process do the error
recovery.

If you canʼt do what you want to do, die.

Let it crash.

Do not program defensively.

6

Erlang’s Better Way
Provides features that let you address
fault tolerance from the start

Cheap lightweight processes

Process linking and monitoring

Workers and supervisors

Hierarchical supervision

Distribution/clustering (not covered)
7

Cheap Processes

It’s practical to have hundreds of
thousands in a single Erlang VM

Fast starting

Small footprint

Isolated, reachable by message
passing

8

Process Linking

Erlang supports bidirectional links
between processes

If a process dies abnormally, linked
processes receive an exit signal and by
default also die

Processes can trap exits to avoid dying
when a linked process dies

9

Workers & Supervisors

Workers implement application logic

Supervisors:

start child workers and supervisors

link to the children and trap exits

take action when a child dies,
typically restarting one or more
children

10

Startup Sequence

Hierarchical sequence

Application controller starts the app

App starts supervisor

Supervisor starts children

Workers are typically instances of OTP
“behaviors,” frameworks that support
an “init” function called during startup

11

Application,
Supervisors, Workers
Application

Workers

Supervisors

Simple
Core

12

“Let It Crash”
Gone Wrong

13

“Let It Crash”
Gone Wrong

Production web video delivery system

Tracking paid video subscriber usage

During an interactive debug session,
looked up a random subscriber several
times

When that subscriber logged out, the
lookup crashed the whole data table.

All usage data lost. Oops.
14

Moral of the Story

Failed to follow the “Principle of Least
Surprise”

Probably not what Joe Armstrong
meant

“Let It Crash” is not:

a (long-term) design crutch

an excuse for losing vital data
15

Handle what you can,
and let someone else
handle the rest.

16

Erlang Term Storage
(ets)

In-memory key-value storage for
Erlang terms

Concurrency safe, very fast

Each ets table is owned by a process

Not garbage collected, either deleted
explicitly or destroyed when owner
dies

17

What Went Wrong?

Subscriber data stored in ets table

Subscriber tracking process did not
handle a failed ets lookup

Resulting exception took down the
tracking process

When the process died, it took the
subscriber data table down with it

18

Avoid Losing ets Data

When you just “Let It Crash” you lose
your ets tables by default

If this isn’t what you want, the
alternatives are straightforward

19

Option: Name an Heir

When creating the table, specify a process
to inherit the table if the owner dies

Heir process receives this message if owner
dies:

{'ETS-TRANSFER', TableId, Owner, HeirData}

20

Option: Give It Away

A process creating an ets table can
give it away to another process

New owner gets the message below:

{'ETS-TRANSFER',Tab,Owner,GiftData}

21

Option: Table Manager

Have the supervisor create a process
whose sole job is to manage the ets
table

Process is doing so little that failure is
extremely unlikely

Table can be public to allow other
processes to read and write

22

Or, a Combination

Table manager links to the table user
process, and traps exits

creates the table and makes itself
the heir

gives it away to the user process

If failure, manager gets the table back

Rinse and repeat
23

Combination Example
1> process_flag(trap_exit, true).
false

24

Combination Example
1> process_flag(trap_exit, true).
false
2> T = ets:new(foo, [{heir, self(), undefined}]).
16400

25

Combination Example
1> process_flag(trap_exit, true).
false
2> T = ets:new(foo, [{heir, self(), undefined}]).
16400
3> P = spawn_link(fun() -> F = fun(Fn) -> receive exit -> ok;
3> M -> io:format("~p~n", [M]), Fn(Fn) end end, F(F) end).
<0.36.0>

26

Combination Example
1> process_flag(trap_exit, true).
false
2> T = ets:new(foo, [{heir, self(), undefined}]).
16400
3> P = spawn_link(fun() -> F = fun(Fn) -> receive exit -> ok;
3> M -> io:format("~p~n", [M]), Fn(Fn) end end, F(F) end).
<0.36.0>
4> ets:give_away(T, P, undefined).
{'ETS-TRANSFER',16400,<0.31.0>,undefined}
true

27

Combination Example
1> process_flag(trap_exit, true).
false
2> T = ets:new(foo, [{heir, self(), undefined}]).
16400
3> P = spawn_link(fun() -> F = fun(Fn) -> receive exit -> ok;
3> M -> io:format("~p~n", [M]), Fn(Fn) end end, F(F) end).
<0.36.0>
4> ets:give_away(T, P, undefined).
{'ETS-TRANSFER',16400,<0.31.0>,undefined}
true
5> P ! exit.
exit

28

Combination Example
1> process_flag(trap_exit, true).
false
2> T = ets:new(foo, [{heir, self(), undefined}]).
16400
3> P = spawn_link(fun() -> F = fun(Fn) -> receive exit -> ok;
3> M -> io:format("~p~n", [M]), Fn(Fn) end end, F(F) end).
<0.36.0>
4> ets:give_away(T, P, undefined).
{'ETS-TRANSFER',16400,<0.31.0>,undefined}
true
5> P ! exit.
exit
6> flush().
Shell got {'ETS-TRANSFER',16400,<0.36.0>,undefined}
Shell got {'EXIT',<0.36.0>,normal}

29

Combination Example
1> process_flag(trap_exit, true).
false
2> T = ets:new(foo, [{heir, self(), undefined}]).
16400
3> P = spawn_link(fun() -> F = fun(Fn) -> receive exit -> ok;
3> M -> io:format("~p~n", [M]), Fn(Fn) end end, F(F) end).
<0.36.0>
4> ets:give_away(T, P, undefined).
{'ETS-TRANSFER',16400,<0.31.0>,undefined}
true
5> P ! exit.
exit
6> flush().
Shell got {'ETS-TRANSFER',16400,<0.36.0>,undefined}
Shell got {'EXIT',<0.36.0>,normal}

30

Another Example

31

TCP Connections

{ok, Socket} = gen_tcp:connect(...),

Q: What happens if connect fails?

A: It returns {error, Reason}

32

Result

{ok, Socket} = gen_tcp:connect(...)

if failure, means

{ok, Socket} = {error, Reason}

In Erlang “assignment” is actually
matching, so this assignment results in
a badmatch exception

The exception causes process death
33

Is This Good Code?

Networks can fail

Remote hosts can fail

Remote server apps can fail

So, gen_tcp:connect must be expected
to fail sometimes

34

Crash or Not?

If the process

must connect now

must connect to a particular server
instance

can’t operate at all without the
connection

Then maybe it’s OK to crash
35

Crash or Not?

If the process

can defer the connection

can try to connect to a different
server instance

can still offer other capabilities that
don’t depend on the connection

Then no, maybe it shouldn’t crash
36

Handle It Elsewhere?

If we choose to crash when we can’t
connect, then

who will deal with the crash?

what will they do to handle it?

is it worth logging?

what if the alternative doesn’t work?

37

Startup Sequence

Hierarchical sequence

Application controller starts the app

App starts supervisor

Supervisor starts children

Workers are typically instances of OTP
“behaviors”

38

OTP Behaviors
Erlang frameworks that support

storage of state in a tail-recursive loop

handling of system messages for status

code upgrades

e.g., gen_server and gen_fsm are behaviors

Developers write behavior impls that fulfill certain
callbacks

One such callback is the “init” function called during
behavior process startup

39

Behavior Init Function

init([]) ->
 {ok, Sock} = gen_tcp:connect(...),
 {ok, #state{socket = Sock}}.

Call connect

Store returned socket in our behavior
loop state

40

Problems in App
Startup

If a child process blocks in init, the
supervisor, app, and app controller are
blocked as well

gen_tcp:connect can take a long time
to timeout on error

What happens if connect returns
{error, Reason} instead?

41

More Startup Problems

Exception in init can cause the
supervisor to restart the child

If the exception occurs repeatedly, the
supervisor’s max child restart
frequency might be exceeded

This can cause the app or even the
whole Erlang node to die

42

Crash in Init?

Q: In general, is “Let It Crash”
appropriate within the init function?

A: Would having its supervisor restart
it make it work next time around?

43

Example:
Connect in Init

Connect is slow: blocks app startup

Connect fails: supervisor restarts it

network is down: restart fails

remote server is down: restart fails

out of file descriptors: restart fails

44

Connect Failures in
Init

Bottom line: supervisor restarts are
unlikely to make connect work

at best, useful for quick temporary
network or remote server glitches

Need different failure handling tactics,
such as alternative servers, multiple
network interfaces

45

Failure Example

Example code calls connect for a non-
existent server in the child init function

Attempt to run it from the Erlang shell:
application dies

1> application:start(example).
{error,{shutdown,{example_app,start,[normal,[]]}}}
=INFO REPORT==== 1-Mar-2011::21:29:27 ===
 application: example
 exited: {shutdown,{example_app,start,[normal,[]]}}
 type: temporary

46

Failure of
Permanent App

When a permanent app dies, the entire
Erlang node dies too
2> application:start(example, permanent).
=INFO REPORT==== 1-Mar-2011::21:30:00 ===
 application: example
 exited: {shutdown,{example_app,start,[normal,[]]}}
 type: permanent
{error,{shutdown,{example_app,start,[normal,[]]}}}
{"Kernel pid
terminated",application_controller,"{application_start_failure,example,
{shutdown,{example_app,start,[normal,[]]}}}"}
Crash dump was written to: erl_crash.dump
Kernel pid terminated (application_controller)
({application_start_failure,example,{shutdown,{example_app,start,
[normal,[]]}}})

47

Lessons So Far

Blocking in init bad, crashing worse

breaks thru the Simple Core

can cause app and node restarts

Crash only if someone else can actually
handle it

Keep init functions fast, simple,
nonblocking

48

Node Restarts
If the node hangs or dies, the “heart”
program can restart it

On a hang, heart issues kill -9, so
reason for hang is lost

Heart has no max restart count

but see http://steve.vinoski.net/
blog/2009/02/22/controlling-
erlangs-heart/

49

Production Logging

Crashes should be logged to see if any
code corrections are necessary

Production systems typically enable
Erlang’s System Application Support
Libraries (SASL)

SASL creates better crash messages,
allowing for easier triage

50

SASL Messages

SASL message for
our connect failure:
38 lines (I don’t
expect you to be
able to read it)

Shows crash reason
and stack trace

Shows state of
process when it
died

{error,{shutdown,{example_app,start,[normal,[]]}}}
=CRASH REPORT==== 3-Mar-2011::18:01:24 ===
 crasher:
 initial call: example:init/1
 pid: <0.55.0>
 registered_name: []
 exception exit: {{badmatch,{error,etimedout}},
 [{example,init,1},
 {gen_server,init_it,6},
 {proc_lib,init_p_do_apply,3}]}
 in function gen_server:init_it/6
 ancestors: [example_sup,<0.53.0>]
 messages: []
 links: [<0.54.0>]
 dictionary: []
 trap_exit: false
 status: running
 heap_size: 233
 stack_size: 24
 reductions: 282
 neighbours:
=SUPERVISOR REPORT==== 3-Mar-2011::18:01:24 ===
 Supervisor: {local,example_sup}
 Context: start_error
 Reason: {{badmatch,{error,etimedout}},
 [{example,init,1},
 {gen_server,init_it,6},
 {proc_lib,init_p_do_apply,3}]}
 Offender: [{pid,undefined},
 {name,example},
 {mfargs,{example,start_link,[]}},
 {restart_type,permanent},
 {shutdown,5000},
 {child_type,worker}]
=INFO REPORT==== 3-Mar-2011::18:01:24 ===
 application: example
 exited: {shutdown,{example_app,start,[normal,[]]}}
 type: temporary

51

Downsides of SASL

Your QA department will report each
crash as a serious bug

won’t know a “bug crash” from a
“crash by design” (unless they know
Erlang)

SASL can use huge amount of memory

use Basho’s riak_err instead

52

Lots More To Cover,
But Not Today

ets and tcp_connect are just two simple
examples

Supervision hierarchies, child restart
specifications and strategies

Application start phases

Process monitoring and the noproc
exception

Debugging common crash causes
53

Summary
Erlang’s hierarchical approach of
workers, supervisors, and nodes
allows each worker process to:

handle what it can

let someone else handle the rest

Erlang makes you think hard about
production error handling, but also
gives you tools to solve the problems

54

For More Info
Joe Armstrong: “Programming Erlang”

Cesarini & Thompson: “Erlang
Programming”

Logan, Merritt, Carlsson: “Erlang and OTP
in Action”

Joe’s thesis: http://www.erlang.org/
download/armstrong_thesis_2003.pdf

erlang-questions mailing list and archives
55

http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf

Thanks

56

