Let T Cppsh . -
Except When You Shouldn't

Steve Vinoski

Verivue, Inc.
Westford, MA USA
vinhoski@ieee.org

QCon London

10 March 2011

mailto:vinoski@ieee.org
mailto:vinoski@ieee.org

About This Talk

S Explore ErIang’S “Let It Crash’
approach to failure handling

1 don’t assume you know Erlang, so
there’ll be some explanation of some
core Erlang concepts

S Focus on a couple problem areas that
aren’'t well documented and that you
~usually learn the hard way

Fail Constantly

® Netflix “Chaos Monkey”

® Kills randomly kills things within
Netflix’s AWS infrastructure to make
sure things keep running even with
failures

S “Best way to avoid failure is to fail
constantly”

S http://techblog.netflix.com/2010/12/5-lessons-
weve-learned-using-aws.html

http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html

Defensive Programming

® Write code to solve the actual problem

S Then try to think of everything that
can go wrong, especially with inputs

S And then write defensive code to catch
and handle all possible errors and
exceptions

Defensive Holes

® The more code you have, the more
bugs you have

S Obscures the busihess logic, making it
hard to read, e_xtend, and maintain

S Error handling code is often
incomplete and inadequately tested

* It’s hard to defend agamst every
possibility

et It Crash

® From Joe Armstrong’s doctoral thesis:

* Let some other process do the error
recovery. |

* If you can't do what you want to do, die.

S Let it crash.

® Do not program defensively.

Erlang’s Better Way

® Provides features that let you address
fault tolerance from the start

f’*'Ch_eap IightWeight_ processés

® Process linking and monitoring

S Workers and supervisors

S Hierarchical supervision

S Distribution/clustering (not covered)

Cheap Processes

S It’s practical to have hundreds of
thousands in a single Erlang VM

S Fast starting

2 Small footprint

S Isolated, reachable by message
~ passing

Process Linking

S Erlang supports b|d|rect|onal Imks
between processes. |

% If a process dies abnormally, linked
processes receive an exit signal and by
default also die

S Processes can trap exits to avoid dying
- when a linked process dies

Workers & Supervisors

® Workers implement application Iogic -
S Supervisors:
® start child workers and sulpervisors -
% link to the clhi'Idren and trap exits

® take action when a child dies,
typically restarting one or more
children -

Startup Seqguence

® Hierarchical sequence

S Application controller starts the app
® App starts supervisor I

* Supervisor starts children

% Workers are typically instances of OTP
- "behaviors,” frameworks that support
an “init” function called during startup

Appllcatlon
Superv1sors Workers

.Appllcatlon

- Supervisors

- Workers

- “Let It Crash”
- Gone Wrong

“Let It Crash”
Gone Wrong

® Production web video delivery system
® Tracking paid video subscriber usage

® During an interactive debug session,
looked up a random subscriber several
times

% When that subscriber'logged out, the
lookup crashed the whole data table.

2 All usage data lost. Oops.

Moral of the Story

® Failed to follow the “Principle of Least
Surprise™

® Probably not what Joe Armstrong
meant

S “Let It Crash” is not:
 a (long-term) design crutch
S an excuse for losing vital data

Handle what you can,
and let someone else
handle the rest.

Erlang Term Storage
' (ets)

S In-memory key-value storage for
Erlang terms |

S Concurrency safe, very fast
® Each ets table is owned by a process

® Not garbage collected, either deleted
explicitly or destroyed when owner
- dies

What Went Wrong?

€ Subscriber data stored in ets table

2 Subscriber tracking proceS’s'ldid not
handle a failed ets lookup

® Resulting exception took down the
tracking process

S When the process died, it took the
- subscriber data table down with it

Avoid Losing ets Data

S When you jUSt “Let It Crash” you Iose
your ets tables by default |

2 If this isn’t what you want, the
alternatives are straightforward

Option: Name an Heir

S When creating the table, specify a process
to inherit the table if the owner dies

S Heir process receives this message if owner
dies:

{'ETS-TRANSFER', Tableld, Owner, HeirData}

Option: Give It Away

S A process creating an ets table can
give it away to another process

% New owner gets the message below:

{'ETS-TRANSFER',Tab,Owner,GiftData}

Option: Table Manager

S Have the superviSor create a process
whose sole job is to manage the ets
table

S Process is doing so little that failure is
extremely unlikely

S Table can be public to allow other
- processes to read and write

Or, a Combination

® Table manager links to the table user
process and traps eX|ts

S creates the table and makes |tself
the helr

S glves it away to the user process
S If failure, manager gets the table back
% Rinse and repeat

Combination Example

e process ﬂag(trap exit, true).
false

Combination Example

-
&
I \\.
|
|
i

I} L ()0 NN Pe ll @ [&l B | [l ‘ i
!-\d W S . I 1 CA N\ ’{“ S N S 7\ 1y |
P -

T [
+ = r N
| 1 | N =

2>T = ets:new(foo, [{heir', self(), undefined}]).
16400

Combination Example

—I L 1 . =i e -T‘)'-r = //4 ur'* a

B A o E OCAQ S 1 (] aRp Ve t 1.1Q)

B E.“\q._;kk,‘g»:lf & ‘H.,‘xw\t A @ \H., LI UC
P
:‘,}1 ,.':-““ o~ 0O
i e’;E S C
= == rcl [2\ BYs

) g~ L~ A = ~ U
p 4 > . (j’ -a‘ a i ‘ i -t < =l | B | LE t | | |
L - = -€lS . Newll(U, U1IC] cili\/, AT IT1IICU (]
1T A00

10400

3> “P- - spawn_link(fun() —> F = fun(Fn) ->.receive exit -> ok;
3> M -> io:format("~p~n", [M]), Fn(Fn) end end, F(F) end).
<0.36.0> | - -

Combination Example

= 1> process flag(trap exit, true),
false - -
2> T = ets:new(foo, [{helr self() undefined})).
16400
3> Pi= ._spavvn_link(fu,n() S = fun(Fn) —>:receive exit.—> ok;
3>-M => io:format("~p~n" [M]) Fn(En) 'end end, F(F) end).
<0.36.0> . '
4> ets:give away(T, P, undeﬁned)
{'ETS-TRANSFER',16400,<0.31.0>,undefined}
true

- Combination Example

© 1> process flag(trap exit, true), -

false - - |

2> T = ets:new(foo, [{helr self() undefined}]).

16400

3> P.= spawn: Imk(fun() - fun(Fn) —>:receive exit.-> ok;

- 3>M -> io:format("~p~n" [M]) Fn(Fn) end end, F(F) end)

() 360> ¢

4> etsigive: away(T R undeﬁned)

{'ETS-TRANSEER’ 16400 <O 31.0> undeﬁned}

true . i | |

5> P | exit.

exit

fCombinqtionExample

S S process ﬂag(trap exit, true), -
false -
2> T = ets:new(foo, [{helr self() undefined})).
16400
3> Pi= ._spawn_link('fu,n() S = fun(Fn) —>:receive exit.-> ok;
3>M -> io:format("~p~n", [M]) Fn(En) 'end end, F(F) end).
<0.36.0> -
4> ets.give: away(T, P, undeﬁned)
{'ETS-TRANSFER',16400,<0.31.0>,undefined}
true i | |
5> P | exit.
exit
6> flush(). e

Shell got {'ETS-TRANSFER',16400,<0.36.0> undeﬁned}
Shell got {'EXIT',<0.36.0>,normal}

29

Combination Example

- 1> process_flag(trap_exit, true).
false -
2> T = ets:new(foo, [{helr self(), undefined}]).
16400
3> P = spawn_link(fun() -> F = fun(Fn) -> receive exit —> ok;
3> M -> io:format("~p~n" [M]) Fn(Fn) end end, F(F) end)
<0.36.0> _
4> ets:give away(T, P, undefined).
{'ETS-TRANSFER',16400,<0.31.0>,undefined}
true
5> P ! exit.
exit
6> flush().
Shell got {'ETS-TRANSFER',16400,<0.36.0>,undefined}
Shell got {'EXIT',<0.36.0>,normal} |

Another Example

TCP Connections

{ok, Socket} = gen_tcp:conhéCt(...),

* Q: What happens if connect fails?

® A: It returns {error, Reason}

Result

{ok, Socket} = gen_tcp:connect(...)
~ If failure, means -
 {ok, Socket} = {error, Reason}

S In Erlang “assignment” is actually
matching, so this assignment results in
a badmatch exception

S The exception causes process death

s This Good Code?

® Networks can fail
S Remote hosts can fail

® Remote server apps can fail

® So, gen_tcp:connect must be expected
to fail sometimes

Crash or Not?

S If the process
S must connect now

S must connect to a particular server
Instance |

S can’t operate at all without the
connection

S Then maybe it’s OK to crash

Crash or Not?

® If the process
& can defer the connection

S can try to connect to a different
server instance

S can still offer other capabilities that
don’t depend on the connection

S Then no, maybe it shouldn’t crash

Handle It Elsewhere?

S If we choose to crash when we can 't
connect, then

& who will deal with the crash?
® what will they do to handle it?

S is it worth Iogging?

S what if the alternative doesn’t work?

Startup Sequence

S Hierarchical sequence
S Ap_plication'control'le'r starts the app
S App starts supervisor -

S Supervisor starts children

S Workers are typically instances of OTP
- “behaviors”

OTP Behaviors

S Erlang frameworks that support
S storage of state in a taiI—recursiye loop
- handling of system me'ss.ages fO"'.S.t.atUS
S code upgrades | .
2 6.9, gen_Server and gen_fsm are behaviors

S Developers write behavior impls that fulfill certain
callbacks

® One such callback is the “init” function called during
behavior process startup

Behavior Init Function

init([]) ->
{ok, Sock} = gen_tcp:connect(...),
{ok, #state{socket = Sock}}.

® Call connect

® Store returned socket in our behavior
loop state

Problems 1n App
Startup

“ If a child process blocks in init, the
supervisor, app, and app controller are
blccked as well

S gen_tcp:connect can take a long time
to timeout on error

S What happens if connect returns
~{error, Reason} instead?

More Startup Problems

® Exception in init can cause the
supervisor to restart the child

® If the exception occurs repeatedly, the
supervisor's max child restart
frequency might be exceeded

® This can cause the app or even the
- whole Erlang node to die

Crash in Init?

S Q: In general IS “Let It Crash”
appropriate W|th|n the init function?

2 A: Would having its supervisor restart
it make it work next time around?

Example:
Connect 1n Init

® Connect is slow: blocks app startup
S Connect fails: supervisor restarts it
S nhetwork is down: restart fails

S remote server is down: restart fails

® out of file descriptors: restart fails

- Connect Failures in
' Init
® Bottom line: supervisor restarts are

unlikely to make connect work

® at best, useful for quick temporary
network or remote server glitches

S Need different failure handling tactics,
such as alternative servers, multiple
- network interfaces

"Failure Example

® Example code calls connect for a non-
existent server in the child init function

® Attempt to run it from the Erlang sheII
application dies

1> application:start(example).
{error,{shutdown,{example_app,start,[normal,[]]}}}
=INFO REPORT== 1-Mar-2011::21:29:27 ===
application: example
exited: {shutdown,{example_app,start,[normal,[]]}}
type: temporary |

Failure of
Permanent App

® When a permanent app dies, the entire
Erlang node dies too

2> application:start(example, permanent).
=INFO REPORT==== 1-Mar-2011::21:30:00 ===

application: example

exited: {shutdown,{example_app,start,[normal,[]]}}

type: permanent -
{error,{shutdown,{example_app,start,[normal,[]]}}}
{"Kernel pid
terminated”,application_controller,’ {appllcatlon start_failure,example,
{shutdown,{example_app,start, [normal [11}}1}'}
Crash dump was written to: erl _crash.dump
Kernel pid terminated (application_controller)
({application_start_failure,example,{shutdown,{example app,start,

[normal,[]1}}})

Lessons So Far

S Blocking in init bad. crashing worse
% breaks thru the Simple Core
® can cause app and node restarts

® Crash only if someone else can actually
handle it

® Keep init functions fast, simple,
nonblocking -

Node Restarts

® If the node hangs or dies, the “heart”
program can restart it

% On a hang, heart |ssues k|II —9 SO
reason for hang is lost

® Heart has no max restart count

S but see http://steve.vinoski.net/
blog/2009/02/22/controII|ng—
erlangs-heart/

Production Logging

® Crashes should be logged to see if any
code corrections are necessary

® Production systems typically enable
Erlang’s System Application Support
Libraries (SASL)

S SASL creates better crash messages,
- allowing for easier triage

SASL Messages

S SASL message for
our connect failure:
38 lines (I don't
expect you to be
able to read it)

® Shows crash reason
and stack trace

S Shows state of

~ process when it
died

{error,{shutdown,{example_app,start,[normal;[1]}}}

=CRASH REPORT==== 3-Mar-2011::18:01:24 ===
crasher:
initial call: example:init/1
pid: <0.55.0>

registered_name: []
exception exit: {{badmatch,{error,etimedout}},
[{example,init,1},
{gen_server,init_it,6}, -
{proc_lib,init_p_do_apply,3}1}
in function gen_server:init_it/6
ancestors: [example_sup,<0.53.0>]
messages: []
links::[<0.54.0>]
dictionary: []
trap_exit: false
status: running
heap_size: 233
stack size: 24
reductions: 282
neighbours:
=SUPERVISOR REPORT==== 3-Mar-2011::18:01:24 ===
Supervisor: {local,example_sup}
Context: - start_error
Reason: = {{badmatch,{error,etimedout}},
[{example,init, 1},
{gen_server,init_it,6},
{proc_lib;init_p_do_apply,3}}
Offender: [{pid,undefined},
{name,example},
{mfargs,{example,start_link,[]}},
{restart_type,permanent},
{shutdown,5000},
{child_type,worker}]
=INFO REPORT==== 3-Mar-2011::18:01:24 ===
application: example
exited: {shutdown,{example_app,start,[normal,[]]}
type: temporary

Downsides of SASL

S Your QA department will report each
crash as a serious bug

S won’t know a “bug crash” froma
“crash by design” (unless they know
Erlang)

S SASL can use huge amount of memory

S use Basho’s riak err instead

- Lots More To Cover,
- But Not Today

S ets and tcp_connect are just two simple
examples

c?»'SUpervision'hierarchiés, chilld restart
specifications and strategies |

 Application start phases

® Process monitoring and the noproc
exception

® Debugging common crash causes

Summary

S Erlang’s hierarchical approach of
workers, supervisors, and nodes
allows each worker: process to:

® handle what it can
® let someone else handle the rest

S Erlang makes you think hard about
- production error handling, but also
gives you tools to solve the problems

For More Info

® Joe Armstrong: “Programming Erlang'”

S Cesarini & Thompson: “Erlang
Programming”

® Logan, Merritt, Carlsson: “Erlang and OTP
in Action” '

 Joe’s thesis: http://wWw.erIang.org[
download/armstrong thesis 2003.pdf

S erlang-questions mailing list and archives

http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf

Thanks

