Erlang Solutions Lid.

Testing for the Unexpected

Ulf Wiger, CTO Erlang Solutions Ltd
QCon, London 201 |

w © 1999-2011 Erlang Solutions Ltd.

About me

® Spent 4 years in Alaska working on
Military Command & Control
and Disaster Response

® |3 years at Ericsson building Phone and
Multimedia switches

® Now CTO at Erlang Solutions Ltd

w ©2011 Erlang Solutions Led.

When Things Break

® Non-stop systems must have a disaster plan
® Everything breaks — eventually! Plan for it
® This has deep impact on
= architecture
= testing

= deployment

w ©2011 Erlang Solutions Led.

How to certify quality?

® Testing — lots of testing...

® Example: Ericsson AXD 301 (launched 1998)
= Ca 2,000 manual test cases before release
= Introduced automation => ca | [,000 tests
= Fault density lowered by 2.5x

® Test automation is mandatory!

w ©2011 Erlang Solutions Led.

This talk

® Standard test automation should be the
low-water mark

® Need to evolve towards more powerful testing
® Find the right balance between effort and results
® The techniques will/should affect

= How you describe your requirements

= How you structure your code

= How you organize your project

w ©2011 Erlang Solutions Led.

Effort vs payoff

Warning: Post-normal science

10.0

75

50

25

test suites
random testing 0
model checking

formal proof

- effort — payoff

w ©2011 Erlang Solutions Led.

Complexity vs effort

More post-normal science

O test suites ‘O random testing

QTronic pilot: (http://epubl.itu.se/1402-1617/2010/070/L.TU-EX-10070-SE.pdf)
* 20% time savings on writing initial test cases

* 90% savings on modifying existing functionality

w ©2011 Erlang Solutions Led.

Test automation examples

® Fitnesse — intuitive for non-programmers

\ @4

(4

FitNesse. UserGuide. SliM.

ScriptTable wuwe

Test

Properties
Refactor
Where Used
Search
Files
Versions

Recent Changes

N RS

» Set Up: .FitNesse.UserGuide.SliM.SetUp (edit)

script login dialog driver | Bob xyzzy

login with username | Bob and password | xyzzy

check login message Bob logged in.

reject login with username | Bob |and password | bad password
check login message Bob not logged in.

ensure login with username | Bob |and password | xyzzy

note this is a comment

show number of login attempts

$symbol= login message

The fixture for this table is:

public class LoginDialogDriver {
private String userName;

© 2011 Erlang Solutions Ltd.

Test automation examples

® Ruby — straightforward for unit test

require "simpleNumber"
require "test/unit”

class TestSimpleNumber < Test::Unit::TestCase

def test_simple
assert_equal(4, SimpleNumber.new(2).add(2))
assert_equal(4, SimpleNumber.new(2).multiply(2))
end

def test_typecheck
assert_raise(RuntimeError) { SimpleNumber.new('a') }
end

def test_failure
assert_equal(3, SimpleNumber.new(2).add(2), "Adding doesn't work")
end

w ©2011 Erlang Solutions Led.

Test automation examples

® TTCN-3 —an ETSI/ITU standard test language

// Coffee Machine

type port IntegerInputPortType message { in integer }
type port CharstringOutputPortType message { out charstring }

type component CoffeeMachineComponentType {
port IntegerInputPortType InputPort;
port CharstringOutputPortType OutputPort;
}

function CoffeeMachineFunction() runs on CoffeeMachineComponentType
{
const integer Price := 50;
var integer Amount, Cents;
Amount := 0;
while (true) {
InputPort.receive(integer:?) -> value Cents;
Amount := Amount+Cents;
while (Amount >= Price) {
OutputPort.send(charstring:"coffee");
Amount := Amount-Price;

' Not a general-purpose language
—must be extended with e.g. C

w ©2011 Erlang Solutions Led.

Test automation examples

® Erlang

® Handy for complex concurrency tests

t_await() ->
Me = self(),
{_Pid,Ref} = spawn_monitor(
fun() -> exit(?assert(gproc:await({n,l,t_await}) =:= {Me,val})) end),
?assert(gproc:reg({n,l,t_await},val) =:= true),
receive
{'DOWN', Ref, _, _, R} =>

?assertEqual (R, OKk)
after 10000 =->

erlang:error(timeout)
end.

w ©2011 Erlang Solutions Led.

How to know what to test!?

® Read the requirements spec,
try to imagine the important cases

® Standard conformance tests, perhaps!?

® Measure code coverage,
invent tests until coverage is high...

® TDD: Stories => test cases => code

® Some obvious problems...

w ©2011 Erlang Solutions Led.

Problems

® Have to trust the requirements spec
= which is usually not very formally written
= ...usually not even correct
® Easy to say what the system is supposed to do
® Harder to describe what you don’t expect
® Code coverage is an unreliable metric
= Low coverage means you likely have a problem

= High coverage doesn’t necessarily = quality

w ©2011 Erlang Solutions Led.

Silly coverage example

® Simple Erlang example with test suite
® |00% code coverage, yet obviously incorrect

W@q
-module(mymath). W

-export([factorial/1]).

-include_lib("eunit/include/eunit.hrl").

factorial(@) ->
1;
factorial(N) ->
N * factorial(N-1).

factorial_test() ->
factorial(3) == 6.

--:--- mymath.erl Top L12 (Erlang E

%
|\3..¢:

Fixing our test suite

® Add another “pin-prick” test...

® Higher abstraction, e.g. with random testing.

® Example:
QuickCheck

(S NeNS) _eqc.e

-module(mymath_eqc).
-compile(export_all).
-include_lib("eqc/include/eqc.hrl").

S
prop_factorial_1() -> ‘(\&V‘Q'
2FORALLCI, int(), —
I*mymath: factorial(I-1)
== mymath: factorial(I)).

prop_factorial_2() ->
?FORALL(CI, ?SUCHTHAT(N, nat(), N>©),
I*mymath: factorial(I-1)
== mymath:factorial(l)).

-U:--- mymath_eqc.erl All L14 (Erlang EXT)

M

QuickCheck: Random testing

® Highly imaginative generation of legal input data
= We define what types of input are legal
® Tool generates test cases on the fly

® Controlled randomness is the key

L Sh rin kl ng Specification Test case Test
outcome
Generate Execute
/\ | W
/ /\’V ‘ | implify

\ [| Minimal
\ /h . counter-
\ No:se Notse example

w ©2011 Erlang Solutions Led.

QuickCheck pilot: Media Proxy

® Interoperability test—endless complexity

® Normal approach: connect two products, see
them fail, adjust, repeat

® Our contract spec: |00 pages long

® Our interop test spec: 700 pages long...

® Problem: Requires stateful testing, which
QuickCheck couldn’t do

w ©2011 Erlang Solutions Led.

QuickCheck pilot: Media Proxy

® 6 work days on a complex, “well-tested” product
® Found some really interesting bugs

® Our 100-page spec + our 700-page test spec
~> 500 LOC Erlang (ok, slight exaggeration...)

® Favourite bug of all time

= adding and subtracting callers in a phone call

N RS

Call |

w ©2011 Erlang Solutions Led.

Pilot—How was it done!?

® Generators

MediaDescriptor ::= SEQUENCE
{ termStateDescr TerminationStateDescriptor OPTIONAL,
streams CHOICE
{ oneStream StreamParms,
multiStream SEQUENCE OF StreamDescriptor
} OPTIONAL,

mediadescriptor(Streams) when Streams=/=[] ->
{mediaDescriptor,
#MediaDescriptor’{
streams =
case Streams of
[{ld,Mode}] ->
oneof([{oneStream,streamParms(Mode)},
{multiStream,[stream(Id,Mode)]}]);
_ -> {multiStream,
[stream(,M) || {I,M} <- Streams]}
end}}.

w ©2011 Erlang Solutions Led.

Pilot—Generate only valid input

® Example: The “add” command is valid if
= The context (call) is empty
= The context contains only a single termination
valid_cmd(S,{set,V,_,send_add,[Cxt,Streams,Req]}) ->

lists:member(Cxt,[?megaco_choose_context_id |
singletoncontexts(S)])

® Hmm, we could also generate invalid input...

= Control the proportions of valid vs invalid

w ©2011 Erlang Solutions Led.

Pilot—Post-conditions

® Given our (logical) state,
and the command issued

= verify the result received

® |f we sent an invalid command,
the result should be a rejection

w ©2011 Erlang Solutions Led.

Pilot—Random evil...

® Last-minute experiment
with controlled generation of illegal values

® Must think about what is a meaningful illegal value
® No time to follow up, but...
= Initial results were astonishing

= Within minutes, QuickCheck had broken our
error handling in a number of ways

= Would likely ruin any ad-hoc error handling
approach

w ©2011 Erlang Solutions Led.

Model-based Testing

® QuickCheck spin-offs exist in several other
languages (Haskell, Scala, Java, Clojure, ...)

® Other tools exist, e.g. C#-based NModel
(http://nmodel.codeplex.com, .NET only...)

i using NModel;
. using NModel.Attributes;
i using NModel.Execution;

| FSM(Off, AcceptingStates(),

! namespace PowerSwitch Transitions(t(Off, PowerOn(), On), t(On, PowerOff(), Off)))

enum Power { On, Off };
public static class Contract

static Power power = Power.Off;

[Action]

static void PowerOn() { power = Power.On; }

static bool PowerOnEnabled() { return power == Power.Off; }
[Action]

static void PowerOff() { power = Power.Off; }

static bool PowerOffEnabled() { return power == Power.On; }

public static ModelProgram Create() { return LibraryModelProgram.Create(typeof(Contract)); }

w ''''''''''''''''''''''''''' ©2011 Erlang Solutions Led.

QuickCheck in Anger

® Gemini Mobile
® Combining

= http://github.com/norton/ubf

= a protocol contract checker

= http://github.com/meck

= a mocking library for Erlang
= QuickCheck

w ©2011 Erlang Solutions Led.

Modeling data races

® Problem:‘“Webmail for millions”

® Mail server compacting the inbox in the
background

® During compaction, messages may appear twice
in the database

® Filtering must verify that users are not getting
duplicates

w ©2011 Erlang Solutions Led.

Modeling data races

® | ogs indicated that duplicates did happen
= Spent one week meditating over log data
® Stubbed out the database with Meck

® Simulated database representations of valid message
histories with QuickCheck

® Verified that message retrieval worked as expected
(total effort: | day)

® “In summary, a total of 4-5 old defects and 2 new
defects introduced by the fixes were found by
quickcheck.” (Joseph Wayne Norton, Gemini Mobile)

w ©2011 Erlang Solutions Led.

Random RESTfulness

® Used UBF to write a contract for a REST service
(C++-based server)

e UBF JSON encoder
® Erlang UBF client, driven by QuickCheck

® QuickCheck generating random requests which
comply with the UBF spec

® UBF contract checker verifies that the reply
complies with the contract

w ©2011 Erlang Solutions Led.

Lessons learned

® Side-effect free code easy to test
® Separate effects from data manipulation

® First prototype should yield an abstract test spec
as input to the development project

® Random tests are cheap

= don'’t fall in love with the tests

w ©2011 Erlang Solutions Led.

