
Erlang Solutions Ltd.

© 1999-2011 Erlang Solutions Ltd.

Testing for the Unexpected
Ulf Wiger, CTO Erlang Solutions Ltd
QCon, London 2011

© 2011 Erlang Solutions Ltd.

About me

• Spent 4 years in Alaska working on
Military Command & Control
and Disaster Response

• 13 years at Ericsson building Phone and
Multimedia switches

• Now CTO at Erlang Solutions Ltd

© 2011 Erlang Solutions Ltd.

When Things Break

• Non-stop systems must have a disaster plan

• Everything breaks — eventually! Plan for it

• This has deep impact on

- architecture

- testing

- deployment

© 2011 Erlang Solutions Ltd.

How to certify quality?

• Testing — lots of testing...

• Example: Ericsson AXD 301(launched 1998)

- Ca 2,000 manual test cases before release

- Introduced automation => ca 11,000 tests

- Fault density lowered by 2.5x

• Test automation is mandatory!

© 2011 Erlang Solutions Ltd.

This talk

• Standard test automation should be the
low-water mark

• Need to evolve towards more powerful testing

• Find the right balance between effort and results

• The techniques will/should affect

- How you describe your requirements

- How you structure your code

- How you organize your project

© 2011 Erlang Solutions Ltd.

Effort vs payoff

0

2.5

5.0

7.5

10.0

test suites

random testing

model checking

formal proof

effort payoff

Warning: Post-normal science

© 2011 Erlang Solutions Ltd.

Complexity vs effort

test suites random testing

QTronic pilot: (http://epubl.ltu.se/1402-1617/2010/070/LTU-EX-10070-SE.pdf)

• 20% time savings on writing initial test cases
• 90% savings on modifying existing functionality

More post-normal science

© 2011 Erlang Solutions Ltd.

Test automation examples

• Fitnesse — intuitive for non-programmers

© 2011 Erlang Solutions Ltd.

Test automation examples

• Ruby — straightforward for unit test

© 2011 Erlang Solutions Ltd.

Test automation examples

• TTCN-3 — an ETSI/ITU standard test language
// Coffee Machine

type port IntegerInputPortType message { in integer }
type port CharstringOutputPortType message { out charstring }

type component CoffeeMachineComponentType {
 port IntegerInputPortType InputPort;
 port CharstringOutputPortType OutputPort;
}

function CoffeeMachineFunction() runs on CoffeeMachineComponentType
{
 const integer Price := 50;
 var integer Amount, Cents;
 Amount := 0;
 while (true) {
 InputPort.receive(integer:?) -> value Cents;
 Amount := Amount+Cents;
 while (Amount >= Price) {
 OutputPort.send(charstring:"coffee");
 Amount := Amount-Price;
 }
 }
} Not a general-purpose language

—must be extended with e.g. C

© 2011 Erlang Solutions Ltd.

Test automation examples

• Erlang

• Handy for complex concurrency tests

© 2011 Erlang Solutions Ltd.

How to know what to test?

• Read the requirements spec,
try to imagine the important cases

• Standard conformance tests, perhaps?

• Measure code coverage,
invent tests until coverage is high...

• TDD: Stories => test cases => code

• Some obvious problems...

© 2011 Erlang Solutions Ltd.

Problems

• Have to trust the requirements spec

- which is usually not very formally written

- ...usually not even correct

• Easy to say what the system is supposed to do

• Harder to describe what you don’t expect

• Code coverage is an unreliable metric

- Low coverage means you likely have a problem

- High coverage doesn’t necessarily = quality

© 2011 Erlang Solutions Ltd.

Silly coverage example

• Simple Erlang example with test suite

• 100% code coverage, yet obviously incorrect

© 2011 Erlang Solutions Ltd.

Fixing our test suite

• Add another “pin-prick” test...

• Higher abstraction, e.g. with random testing.

• Example:
QuickCheck

hangs..
.

© 2011 Erlang Solutions Ltd.

QuickCheck: Random testing

• Highly imaginative generation of legal input data

- We define what types of input are legal

• Tool generates test cases on the fly

• Controlled randomness is the key

• Shrinking

© 2011 Erlang Solutions Ltd.

QuickCheck pilot: Media Proxy

• Interoperability test—endless complexity

• Normal approach: connect two products, see
them fail, adjust, repeat

• Our contract spec: 100 pages long

• Our interop test spec: 700 pages long...

• Problem: Requires stateful testing, which
QuickCheck couldn’t do

© 2011 Erlang Solutions Ltd.

QuickCheck pilot: Media Proxy

• 6 work days on a complex, “well-tested” product

• Found some really interesting bugs

• Our 100-page spec + our 700-page test spec
~> 500 LOC Erlang (ok, slight exaggeration...)

• Favourite bug of all time

- adding and subtracting callers in a phone call

© 2011 Erlang Solutions Ltd.

Pilot—How was it done?

• Generators

mediadescriptor(Streams) when Streams=/=[] ->
 {mediaDescriptor,
 #’MediaDescriptor’{
 streams =
 case Streams of
 [{Id,Mode}] ->
 oneof([{oneStream,streamParms(Mode)},
 {multiStream,[stream(Id,Mode)]}]);
 _ -> {multiStream,
 [stream(I,M) || {I,M} <- Streams]}
 end}}.

MediaDescriptor ::= SEQUENCE
 { termStateDescr TerminationStateDescriptor OPTIONAL,
 streams CHOICE
 { oneStream StreamParms,
 multiStream SEQUENCE OF StreamDescriptor
 } OPTIONAL,
...

© 2011 Erlang Solutions Ltd.

Pilot—Generate only valid input

• Example: The “add” command is valid if

- The context (call) is empty

- The context contains only a single termination

• Hmm, we could also generate invalid input...

- Control the proportions of valid vs invalid

valid_cmd(S,{set,V,_,send_add,[Cxt,Streams,Req]}) ->
 lists:member(Cxt,[?megaco_choose_context_id |
 singletoncontexts(S)])

© 2011 Erlang Solutions Ltd.

Pilot—Post-conditions

• Given our (logical) state,
and the command issued

- verify the result received

• If we sent an invalid command,
the result should be a rejection

© 2011 Erlang Solutions Ltd.

Pilot—Random evil...

• Last-minute experiment
with controlled generation of illegal values

• Must think about what is a meaningful illegal value

• No time to follow up, but...

- Initial results were astonishing

- Within minutes, QuickCheck had broken our
error handling in a number of ways

- Would likely ruin any ad-hoc error handling
approach

© 2011 Erlang Solutions Ltd.

Model-based Testing

• QuickCheck spin-offs exist in several other
languages (Haskell, Scala, Java, Clojure, ...)

• Other tools exist, e.g. C#-based NModel
(http://nmodel.codeplex.com, .NET only...)

© 2011 Erlang Solutions Ltd.

QuickCheck in Anger

• Gemini Mobile

• Combining

- http://github.com/norton/ubf

- a protocol contract checker

- http://github.com/meck

- a mocking library for Erlang

- QuickCheck

© 2011 Erlang Solutions Ltd.

Modeling data races

• Problem: “Webmail for millions”

• Mail server compacting the inbox in the
background

• During compaction, messages may appear twice
in the database

• Filtering must verify that users are not getting
duplicates

© 2011 Erlang Solutions Ltd.

Modeling data races

• Logs indicated that duplicates did happen

- Spent one week meditating over log data

• Stubbed out the database with Meck

• Simulated database representations of valid message
histories with QuickCheck

• Verified that message retrieval worked as expected
(total effort: 1 day)

• “In summary, a total of 4-5 old defects and 2 new
defects introduced by the fixes were found by
quickcheck.” (Joseph Wayne Norton, Gemini Mobile)

© 2011 Erlang Solutions Ltd.

Random RESTfulness

• Used UBF to write a contract for a REST service
(C++-based server)

• UBF JSON encoder

• Erlang UBF client, driven by QuickCheck

• QuickCheck generating random requests which
comply with the UBF spec

• UBF contract checker verifies that the reply
complies with the contract

© 2011 Erlang Solutions Ltd.

Lessons learned

• Side-effect free code easy to test

• Separate effects from data manipulation

• First prototype should yield an abstract test spec
as input to the development project

• Random tests are cheap

- don’t fall in love with the tests

