
The next generation of 
Google APIs

Ade Oshineye
www.oshineye.com/+

Let’s talk about the future

http://www.oshineye.com/+
http://www.oshineye.com/+


This. Is. Not. A. Vendor. Pitch.

This is not a vendor pitch

http://www.oshineye.com/+
http://www.oshineye.com/+


www.oshineye.com/+

I work on the Google+ Project

http://www.oshineye.com/+
http://www.oshineye.com/+


A long time ago I wrote a short book



“We’re working on a project to bring you 
a new and improved Google experience, 
and over the next few months, you’ll 
continue to see more updates to our 
look and feel”

http://googleblog.blogspot.com/2011/06/evolving-google-design-and-experience.html

One unified user experience

http://googleblog.blogspot.com/2011/06/evolving-google-design-and-experience.html
http://googleblog.blogspot.com/2011/06/evolving-google-design-and-experience.html


This is great for users.



What about a unified 
developer experience?

What about developers?
What if developers were people too?



Developers get their own site. All our developer documentation is migrating here.
But it’s not enough to unify the documentation if you don’t unify the APIs...



Mistakes made and 
lessons learned

How do we get to this promised land of unified APIs?
Let’s go back then forwards



GData APIs



ReST, Atom, AtomPub, standards.
JSON is just a second-class representation of the Atom



Big investment across the entire company
Many years, multiple revisions
Lots of iteration and refinement



What’s wrong with this picture?



Feedback

GData made all APIs look like atom:entries
It didn’t model the domain
It put ReST and AtomPub compliance before developer convenience
This made simple things hard

http://www.oshineye.com/+
http://www.oshineye.com/+


Buzz API



ActivityStreams, Atom, AtomPub, JSON, OAuth, PSHB, MediaRSS, Portable Contacts



Lots of standards. Reused and composed standards.
Focussed on letting you rebuild our UI.
Modeled the domain.



JSON client library
Standards first

Developer interviews
UI reflects API

API models domain

What changed for Buzz



• Anybody could build their own client 
library on top of HTTP

• Possible to reuse existing technology like 
Google Reader because we reused Atom

• Brought attention to niche specifications 
like GeoRSS

• Made more people aware of OAuth

Good news



• Made more people aware of OAuth

• Discovered bugs in niche specifications like 
GeoRSS

• Composing specifications meant you had to 
read standards documents

• Specifications != Standards

• People kept trying to write their own client 
libraries

Bad news



Google+ API







1 UX techniques for developer-facing 
products

2 Focus on the OOB experience

3 Use convention over configuration

4 Design away common problems



developerexperience.org
@devexpftw

+Developer Experience

#devexp

http://www.developerexperience.org
http://www.developerexperience.org


What does this mean 
for Google+?



Build cool technology

Design is how it works. This is not something you can apply later to make things pretty.
It has to be designed-in. It’s not just about having pretty documentation.





Solve real problems for 
real people



1 Users

2 External developers

3 Internal developers

Who are these real people?



Problems & solutions



People don’t want to 
learn ReST, OAuth, 

HTTP, etc

They just want to write code and solve the problem they’re being paid to solve



Give them client libraries that do the right thing by default



We can’t afford to 
build/maintain every 

language+API 
combination



JSON Document describing all 
our APIs

JSON Document per API

Libraries could read those 
documents and statically/
dynamically provide classes

1 library per language not per 
API or version

Discovery



People don’t want to 
deal with the 

impedance mismatch 
between their 

languages and AtomPub

External developers aren’t as excited about Atom as we are



Default to JSON

Let them eat JSON



Correction: Default to pretty-printed JSON

The overhead is worth it in terms of debugging time saved. It can always be switched off.



People want to play 
with your API before 

they make a 
commitment



http://code.google.com/apis/explorer/#_s=plus&_v=v1&_m=people.get&userId=me

Give them an API Explorer that uses Discovery

http://code.google.com/apis/explorer/#_s=plus&_v=v1&_m=people.get&userId=me
http://code.google.com/apis/explorer/#_s=plus&_v=v1&_m=people.get&userId=me


People hate waiting to 
get hold of API keys in 
order to use your API

This is magnified if they’re using multiple APIs



Give them a unified API console for managing API keys and billing



The Circle Of Life

for APIs



1 Launch

2 Use and abuse

3 Feedback and iteration

4 Revision and replacement



There will be mistakes

• Provide a public issue tracker

• Have a mailing list for questions and 
discussion

• Get feedback on your documentation

• Go out and ask your customers what they 
think of your API

• Run ‘office hours’





Religion



ReST versus RPC

We support both. Web developers seem increasingly fond of RPC. 
They both have their place.



Versioning

Content negotiation, custom headers or different domains.
We just put it in the URL because it’s simpler for people to handle without reading 
documentation.
We seldom increment the version.



Should your APIs 
reflect your UI?

No.
It slows down the evolution of your UI and API because you have to maintain dead endpoints.
It encourages you to just throw your internal APIs over the wall.
It blinds you to the actual needs of external developers. They’re not like you.
It limits what external developers can build.



JSON > XML/Atom

JSON is slowly reinventing the XML wheel (for example JSON Schema) but it’s what developers 
want and need.
You have to give the people what they want.



Snowflakes versus 
Standards/Specifications

Snowflakes have the benefit of internal consistency
Standards have the benefit of external consistency









http://self-issued.info/docs/draft-jones-json-web-token.html
Or would you just use a verified=”true” parameter?



When the data 
disagrees with your 
beliefs, change your 

religion



Thank You!


