
Designing & Consuming a Cloud 2.0 API

@jclouds

@jclouds

First Things First

Thanks!

@jclouds

Agenda?

?

@jclouds

• Why Cloud APIs Matter

• State of the Cloud

• Why a Cloud 2.0 API?

• Designing a C2API

• Consuming a C2API

Agenda

@jclouds

• Connected Ecosystem!

• Delight Users

• Encourage Community

• Your API = Your Service

Why Cloud APIs Matter

@jclouds

• HTTP(s) is da lingo

• Beyond that, a mixed bag:

• Layouts

• Formats

• Authentication

• …

• it’s all different!

State of the Cloud

@jclouds

• Deal with some cloud-specific
challenges

• Have seen enough attempts
to see what works

• Help Your Community

Why a Cloud 2.0 API?

@jclouds

• Layout

• Formats

• Authentication

• Security

• Efficiency

Designing a Cloud 2.0 API

@jclouds

• Statefulness

• Progress & Errors

• Degradation

• Extensibility

• Evolution

Designing a Cloud 2.0 API

@jclouds

• Blocking vs. non-blocking

• Error handling

• Consistency

• Backoff

Consuming a Cloud 2.0 API

@jclouds

REST or some RESTish variant

• “pure” REST: more self-
documenting but more
reference parsing

context in scheme

• watch for land-grab

Designing a Cloud 2.0 API: Layout

@jclouds

JSON

• Depends on library support

Query params

• Good for caching
& auto-retry

• Easily logged

YAML

• Concise

Designing a Cloud 2.0 API: Formats

@jclouds

API key & secret

• Can be rotated and safely
lost

• De facto standard

OAuth 2

• Weight behind it but better
be easier than 1!

Designing a Cloud 2.0 API: Auth

@jclouds

Offer HTTPS

• Allow user to make the
tradeoff

Pre-signed requests

• Enable side-loading

Time windows

Designing a Cloud 2.0 API: Security

@jclouds

Multi-part & ranges

• Parallelization of large
payloads

Async calls

• Return a job for everything

Not just binary

• “Can’t give you exactly what
you requested but have this”

Designing a Cloud 2.0 API: Efficiency

@jclouds

Idempotency

• Cloud is a volatile place

• “Default to action”

Designing a Cloud 2.0 API: Statefulness

@jclouds

Status requests

Support cancellation

• Great for troubleshooting
and saving $$$

• Application-level graceful
degradation

Designing a Cloud 2.0 API: Progress

@jclouds

Well-defined status codes

• But must also be able to
distinguish subcategories

Error payload

• E.g. backoff period or missing
funds

Designing a Cloud 2.0 API: Errors

@jclouds

Throttling: Don’t!

• …if you can avoid it. Scale
is the name of the game!

Backoff request

• Ask first

Effective bandwidth controls

• Implementation challenge

Designing a Cloud 2.0 API: Degradation

@jclouds

Well-known sets

• Ad hoc hard to consume

Designing a Cloud 2.0 API: Extensibility

@jclouds

Allow version checks

Support different client
versions

Pre-release announcements

Documentation

• Examples ready to cut’n’curl

Stability!

Designing a Cloud 2.0 API: Evolution

@jclouds

Take Beta Seriously™

• Seek out tough clients

• Open up access

• Write integration drivers

 Friendly API licence

• E.g. Creative Commons

Designing a Cloud 2.0 API: Evolution

@jclouds

Block client-side

• …if you need to. More control
over cancellation etc.

Beware throttling effects

• …from async production or
even test code!

Consuming a Cloud 2.0 API:
Blocking vs. non-blocking

@jclouds

Retry policies

• Be prepared for timeouts,
spurious errors etc.

• Don’t want every exception
handled in your application
logic

Consuming a Cloud 2.0 API:
Error handling

@jclouds

Prepare for stale data!

• Metadata and content might
be out of sync

• Need async and parallel
testing to flush this out

Consuming a Cloud 2.0 API:
Consistency

@jclouds

Prioritize operations

• Prepare for degraded
performance

• “Low cash” mode

Consuming a Cloud 2.0 API: Backoff

@jclouds

More Info

• http://www.jclouds.org

• http://github.com/jclouds/jclouds

http://www.jclouds.org/
http://github.com/jclouds/jclouds

@jclouds

Come Join In!

• jclouds@googlegroups.com

• @jclouds

• IRC #jclouds on freenode

