
ERLANG
The Language from the Future?

Damien Katz
Couchbase CTO, Creator of Apache CouchDB

Friday, March 9, 2012

AGENDA

What is Erlang

From a High Level, Why is Erlang Cool?

Why is Erlang from the future?

Accidentally designed for multi-core

Erlang and CouchDB

Great fit, but some problems.

So when would You use Erlang?

Friday, March 9, 2012

WHY IS ERLANG SO
COOL?

Friday, March 9, 2012

Functional Concurrent Programming Language

Built by Ericsson in 80s and 90s

Designed for Reliability and Concurrency

Used in commercial telecom switches with great
success and reliability

A LITTLE BACKGROUND

Friday, March 9, 2012

WHAT IS ERLANG LIKE?

Friday, March 9, 2012

WHAT IS ERLANG LIKE?

It’s weird.

It’s simple.

It’s extremely productive

It’s extremely reliable

The design of the VM is beautiful

It’s kinda slow

Friday, March 9, 2012

IT’S WEIRD

Friday, March 9, 2012

IT’S WEIRD

The syntax looks like nothing you’ve used (unless
you’ve used Prolog (you haven’t))

No looping

No destructive updates.

The `if`expression is almost useless

Friday, March 9, 2012

IT’S ODDLY SIMPLE

Friday, March 9, 2012

IT’S ODDLY SIMPLE

You get lists, tuples, numbers, floats, atoms, binaries,
and some Erlang specific types (pids, unique refs).

No classes, no OO, no user defined types.

It’s functional, so you can create closures and pass
around functions.

It’s like LISP, without all the Macro Power!

Friday, March 9, 2012

WTF? HOW DO YOU GET
ANYTHING DONE?

Friday, March 9, 2012

WTF? HOW DO YOU GET
ANYTHING DONE?

I dunno. You just do. The weirdness wears off,
enlightenment comes and suddenly you produce
small, reliable code.

I still miss classes, structs, better ways to organize
code.

The real magic is concurrency and error handling

Friday, March 9, 2012

CONCURRENCY

Friday, March 9, 2012

CONCURRENCY

Erlang “processes” are very lightweight. Lighter than
threads. Almost like an object in other languages. But
like OS processes in concept.

Can scales to millions of processes per VM.

Processes “protect” their state. Send a message to ask
for some state, or to modify state.

Each process has it’s own heap. Makes concurrent GC
possible without long VM pauses.

Friday, March 9, 2012

ERROR HANDLING

Friday, March 9, 2012

ERROR HANDLING

Concurrency and Error handling go hand in hand.

Allows application code and error handling code to
be separated.

Generally, don’t worry about robustness and error
handling. Let it crash and another process will deal
with the error.

Simplifies code, makes it MORE reliable.

Friday, March 9, 2012

PATTERN MATCHING

Friday, March 9, 2012

PATTERN MATCHING

I wish every language had this.

Key to making Erlang code concise and selective
message receiving easy.

Makes up for busted `if` expressions.

Friday, March 9, 2012

SO, HOW IS IT FROM THE
FUTURE?

Friday, March 9, 2012

THE PAST

One CPU

Uniform Main Memory

Concurrency was about
making a single processor
do many things

Friday, March 9, 2012

MULTICORE PRESENT:
HOW WE THINK

Lots of CPUS

Lots of Memory

Concurrency is also about
exploiting all those
processors

Friday, March 9, 2012

MULTICORE PRESENT:
REALITY

Lots of Cores, each with levels of cache (L1, L2, L3)

NUMA - Non-uniform Memory Access

Physics!

Friday, March 9, 2012

MOST LANGUAGES
DON’T MODEL REALITY

Friday, March 9, 2012

MOST LANGUAGES
DON’T MODEL REALITY

Shared memory modeled as one big space

Lots of memory, yet processing small amounts of
tightly packed memory is much faster.

No way to tell the language that some things should
be close to our processor

Inter-Process Communication maps more closely to
Inter-Processor Communication

Friday, March 9, 2012

Heap Process Process

Process Process Heap

Heap

Heap

Erlang VM

ERLANG MAPS WELL TO
MODERN MULTICORE

Friday, March 9, 2012

ERLANG MAPS WELL TO
MODERN MULTICORE

Erlang makes inter-process communication easy.

Each Erlang process has it’s own heap.

Erlang process heaps tend to be much smaller than
shared memory heaps, fitting more relevant data into
processor cache.

Getting/setting data from another process is an
explicit message send, similar to memory bus
communication of processors.

Friday, March 9, 2012

ACCIDENTAL MULTI-
CORE AWESOMENESS

Friday, March 9, 2012

ACCIDENTAL MULTI-
CORE AWESOMENESS

Designed originally to run on small systems, like
network switches.

Only got multi-core aware a few years ago.

Could always take advantage of multi-core, but had
to use less efficient OS level IPC.

But the model is right, implementation getting better
and better...

Friday, March 9, 2012

ERLANG AND COUCHDB

Friday, March 9, 2012

DATABASES NEED:

Concurrency - CHECK!

Reliability - CHECK!

Monitoring - CHECK!

Rapid Recovery - CHECK!

Distributed Computing - CHECK!

High Performance - Ummmm

Friday, March 9, 2012

ERLANG IS ALMOST
PERFECT!

It ticks most of checkboxes!

It’s the Language of Future!

What’s the problem?

Friday, March 9, 2012

ERLANG’S SYNTAX IS
THE BIG PROBLEM

Friday, March 9, 2012

ERLANG’S SYNTAX IS
THE BIG PROBLEM

I love me some Erlang.

I see past the weirdness.

I’m not the average developer.

Friday, March 9, 2012

WEIRD SYNTAX MAKES
ERLANG SLOW!

Friday, March 9, 2012

WEIRD SYNTAX MAKES
ERLANG SLOW!

It’s weird!

Weird syntax prevents massive adoption.

Massive adoption leads to massive investment

Massive investment leads to better tools, better and
faster VMs.

Friday, March 9, 2012

JAVA WAS SLOW TOO,
BUT IT WAS FAMILIAR

Friday, March 9, 2012

JAVA WAS SLOW TOO,
BUT IT WAS FAMILIAR

But it had a syntax that was familiar C and C++
developers.

Java was easier and simpler in lots of ways
developers cared about.

Java got massively popular.

Then Java got massive investment.

Then Java got pretty damn fast.

Friday, March 9, 2012

Erlang syntax was just
a little more normal!

Friday, March 9, 2012

WHEN SHOULD YOU USE
ERLANG?

Friday, March 9, 2012

BACKEND, HEAVY
LIFTING SYSTEMS

Friday, March 9, 2012

ROBUST, RELIABLE,
LONG LIVED

Friday, March 9, 2012

DISTRIBUTED SYSTEMS

Friday, March 9, 2012

YOUR ENGINEERS CAN
FILL IN GAPS

Less tools, less
libraries, less shared
knowledge.

Erlang VM sometimes
does weird things.
(true of most VMs
though)

Friday, March 9, 2012

WHEN SHOULD YOU NOT
USE ERLANG?

Friday, March 9, 2012

MANIPULATING TEXT OR
HTML (CUMBERSOME)

Friday, March 9, 2012

CPU INTENSIVE TASKS

CPU is cheap but...

Faster is better

Customers want low
cost cloud solution
(CPU still costs $$,
and lower CPU is an
advantage)

Friday, March 9, 2012

ENGINEER TURNOVER IS
A PROBLEM

Good programmers are hard
to find. Erlangers even
harder.

Some might argue that
letting them program in
Erlang will bring better
engineers and reduce
turnover. Could be!

Friday, March 9, 2012

CAN I GET ERLANG
BENEFITS IN OTHER

LANGUAGES?

Friday, March 9, 2012

ERLANG BENEFITS IN
GC’D LANGUAGES

Friday, March 9, 2012

ERLANG BENEFITS IN
GC’D LANGUAGES

You can get the distributed features but..

Process isolation and error handling and concurrent
garbage collection... FORGET IT.

Most garbage collected languages can fake it, but you
need both language and VM support to do it right.

Leaky abstractions are leaky.

Friday, March 9, 2012

ERLANG BENEFITS IN
C/C++

Friday, March 9, 2012

ERLANG BENEFITS IN
C/C++

The Erlang VM is written in C.

C/C++ let’s you control memory and concurrency. So....

Use as little shared state as possible

Break down tasks, use memory pools and finite state
machines when possible.

Avoid locks, use messages instead.

~10x the code size of Erlang. But 5-10x CPU performance..
And coding and debugging will take 5-10x as long.

Friday, March 9, 2012

OR JUST USE ERLANG!

Unless you sell a commercial
product, or compete on
absolute performance, your
biggest concern is engineer
productivity and maintenance.

Save money on coding and
debugging, spend it on more
CPUs

More reliable in production too.

Friday, March 9, 2012

COUCHBASE
CUSTOMERS:

Friday, March 9, 2012

COUCHBASE: A HYBRID
OF C/C++ AND ERLANG

Friday, March 9, 2012

COUCHBASE: A HYBRID
OF C/C++ AND ERLANG

We use Erlang for distributed stuff. Cluster
management and replication.

Migrating performance sensitive code away from
Erlang. Increasing performance and reducing CPU.
It’s more code, and longer debugging.

But our customers care not. They don’t want
compromises. They want fast, reliable AND cheap to
run.

Friday, March 9, 2012

THANK YOU!

couchbase.com

damienkatz.net

damien@couchbase.com

Friday, March 9, 2012

http://couchbase.com
http://couchbase.com
http://damienkatz.net
http://damienkatz.net
mailto:damien@couchbase.com
mailto:damien@couchbase.com

