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AGENDA

What is Erlang

From a High Level, Why is Erlang Cool?

Why is Erlang from the future?

Accidentally designed for multi-core

Erlang and CouchDB

Great fit, but some problems.

So when would You use Erlang?

Friday, March 9, 2012



WHY IS ERLANG SO 
COOL?
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Functional Concurrent Programming Language 

Built by Ericsson in 80s and 90s

Designed for Reliability and Concurrency

Used in commercial telecom switches with great 
success and reliability

A LITTLE BACKGROUND
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WHAT IS ERLANG LIKE?
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WHAT IS ERLANG LIKE?

It’s weird.

It’s simple.

It’s extremely productive

It’s extremely reliable

The design of the VM is beautiful

It’s kinda slow
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IT’S WEIRD
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IT’S WEIRD

The syntax looks like nothing you’ve used (unless 
you’ve used Prolog (you haven’t))

No looping

No destructive updates.

The `if`expression is almost useless 
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IT’S ODDLY SIMPLE
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IT’S ODDLY SIMPLE

You get lists, tuples, numbers, floats, atoms, binaries, 
and some Erlang specific types (pids, unique refs).

No classes, no OO, no user defined types.

It’s functional, so you can create closures and pass 
around functions.

It’s like LISP, without all the Macro Power!
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WTF? HOW DO YOU GET 
ANYTHING DONE?
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WTF? HOW DO YOU GET 
ANYTHING DONE?

I dunno. You just do. The weirdness wears off, 
enlightenment comes and suddenly you produce 
small, reliable code.

I still miss classes, structs, better ways to organize 
code.

The real magic is concurrency and error handling
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CONCURRENCY
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CONCURRENCY

Erlang “processes” are very lightweight. Lighter than 
threads. Almost like an object in other languages. But 
like OS processes in concept.

Can scales to millions of processes per VM.

Processes “protect” their state. Send a message to ask 
for some state, or to modify state.

Each process has it’s own heap. Makes concurrent GC 
possible without long VM pauses.
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ERROR HANDLING
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ERROR HANDLING

Concurrency and Error handling go hand in hand.

Allows application code and error handling code to 
be separated.

Generally, don’t worry about robustness and error 
handling. Let it crash and another process will deal 
with the error.

Simplifies code, makes it MORE reliable.
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PATTERN MATCHING
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PATTERN MATCHING

I wish every language had this.

Key to making Erlang code concise and selective 
message receiving easy.

Makes up for busted `if` expressions.
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SO, HOW IS IT FROM THE 
FUTURE?
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THE PAST

One CPU

Uniform Main Memory

Concurrency was about 
making a single processor 
do many things
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MULTICORE PRESENT:
HOW WE THINK

Lots of CPUS

Lots of Memory

Concurrency is also about 
exploiting all those 
processors
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MULTICORE PRESENT:
REALITY

Lots of Cores, each with levels of cache (L1, L2, L3)

NUMA - Non-uniform Memory Access

Physics!
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MOST LANGUAGES 
DON’T MODEL REALITY
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MOST LANGUAGES 
DON’T MODEL REALITY

Shared memory modeled as one big space

Lots of memory, yet processing small amounts of 
tightly packed memory is much faster.

No way to tell the language that some things should 
be close to our processor

Inter-Process Communication maps more closely to 
Inter-Processor Communication
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Heap Process Process

Process Process Heap

Heap

Heap

Erlang VM

ERLANG MAPS WELL TO 
MODERN MULTICORE
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ERLANG MAPS WELL TO 
MODERN MULTICORE

Erlang makes inter-process communication easy.

Each Erlang process has it’s own heap.

Erlang process heaps tend to be much smaller than 
shared memory heaps, fitting more relevant data into 
processor cache.

Getting/setting data from another process is an 
explicit message send, similar to memory bus 
communication of processors.
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ACCIDENTAL MULTI-
CORE AWESOMENESS
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ACCIDENTAL MULTI-
CORE AWESOMENESS

Designed originally to run on small systems, like 
network switches.

Only got multi-core aware a few years ago.

Could always take advantage of multi-core, but had 
to use less efficient OS level IPC.

But the model is right, implementation getting better 
and better...
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ERLANG AND COUCHDB
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DATABASES NEED: 

Concurrency - CHECK!

Reliability - CHECK!

Monitoring - CHECK!

Rapid Recovery - CHECK!

Distributed Computing - CHECK!

High Performance - Ummmm
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ERLANG IS ALMOST 
PERFECT!

It ticks most of checkboxes!

It’s the Language of Future!

What’s the problem?
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ERLANG’S SYNTAX IS 
THE BIG PROBLEM
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ERLANG’S SYNTAX IS 
THE BIG PROBLEM

I love me some Erlang.

I see past the weirdness.

I’m not the average developer.
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WEIRD SYNTAX MAKES 
ERLANG SLOW!
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WEIRD SYNTAX MAKES 
ERLANG SLOW!

It’s weird!

Weird syntax prevents massive adoption.

Massive adoption leads to massive investment

Massive investment leads to better tools, better and 
faster VMs.
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JAVA WAS SLOW TOO, 
BUT IT WAS FAMILIAR
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JAVA WAS SLOW TOO, 
BUT IT WAS FAMILIAR

But it had a syntax that was familiar C and C++ 
developers.

Java was easier and simpler in lots of ways 
developers cared about.

Java got massively popular.

Then Java got massive investment.

Then Java got pretty damn fast.
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Erlang syntax was just
a little more normal!
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WHEN SHOULD YOU USE 
ERLANG?
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BACKEND, HEAVY 
LIFTING SYSTEMS
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ROBUST, RELIABLE, 
LONG LIVED

Friday, March 9, 2012



DISTRIBUTED SYSTEMS
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YOUR ENGINEERS CAN 
FILL IN GAPS

Less tools, less 
libraries, less shared 
knowledge.

Erlang VM sometimes 
does weird things. 
(true of most VMs 
though)
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WHEN SHOULD YOU NOT 
USE ERLANG?

Friday, March 9, 2012



MANIPULATING TEXT OR 
HTML (CUMBERSOME)
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CPU INTENSIVE TASKS

CPU is cheap but...

Faster is better

Customers want low 
cost cloud solution 
(CPU still costs $$, 
and lower CPU is an 
advantage)
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ENGINEER TURNOVER IS 
A PROBLEM

Good programmers are hard 
to find. Erlangers even 
harder.

Some might argue that 
letting them program in 
Erlang will bring better 
engineers and reduce 
turnover. Could be!

Friday, March 9, 2012



CAN I GET ERLANG 
BENEFITS IN OTHER 

LANGUAGES?
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ERLANG BENEFITS IN 
GC’D LANGUAGES 
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ERLANG BENEFITS IN 
GC’D LANGUAGES 

You can get the distributed features but..

Process isolation and error handling and concurrent 
garbage collection... FORGET IT.

Most garbage collected languages can fake it, but you 
need both language and VM support to do it right. 

Leaky abstractions are leaky.
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ERLANG BENEFITS IN
C/C++
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ERLANG BENEFITS IN
C/C++

The Erlang VM is written in C.

C/C++ let’s you control memory and concurrency. So....

Use as little shared state as possible

Break down tasks, use memory pools and finite state 
machines when possible.

Avoid locks, use messages instead.

~10x the code size of Erlang. But 5-10x CPU performance.. 
And coding and debugging will take 5-10x as long.
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OR JUST USE ERLANG!

Unless you sell a commercial 
product, or compete on 
absolute performance, your 
biggest concern is engineer 
productivity and maintenance.

Save money on coding and 
debugging, spend it on more 
CPUs

More reliable in production too.
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COUCHBASE 
CUSTOMERS:
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COUCHBASE: A HYBRID 
OF C/C++ AND ERLANG 

Friday, March 9, 2012



COUCHBASE: A HYBRID 
OF C/C++ AND ERLANG 

We use Erlang for distributed stuff. Cluster 
management and replication.

Migrating performance sensitive code away from 
Erlang. Increasing performance and reducing CPU. 
It’s more code, and longer debugging.

But our customers care not. They don’t want 
compromises. They want fast, reliable AND cheap to 
run.
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THANK YOU!

couchbase.com

damienkatz.net

damien@couchbase.com
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