
1 | © 2012 Mobile Interactive Group @ QCON London

Working with MIG
•  Our robust technology has been used by major broadcasters and media clients for over 7 years

•  Voting, Polling and Real-time Interactivity through second screen solutions

•  Incremental revenue generating services integrated with TV productions

•  Facilitate 10,000+ interactions per second as standard across our platforms

•  Platform and services have been audited by Deloitte and other compliant bodies

•  High capacity throughput for interactions, voting and transactions on a global scale

•  Partner of choice for BBC, ITV, Channel 5, SKY, MTV, Endemol, Fremantle and more:

2 | © 2012 Mobile Interactive Group @ QCON London

mVoy Products

Interactive messaging & multi-step marketing campaigns

Social Interactivity & Voting via Facebook, iPhone, Android & Web

High volume mobile messaging campaigns & mobile payments

Create, build, host & manage mobile commerce, mobile sites & apps

3 | © 2012 Mobile Interactive Group @ QCON London

MIG Technologies
•  Erlang
•  RIAK & leveldb
•  Redis
•  Ubuntu

•  Ruby on Rails
•  Java
•  Node.js
•  MongoDB
•  MySQL

4 | © 2012 Mobile Interactive Group @ QCON London

Battle Stories

•  Building a wallet

•  Optimizing your hardware stack

•  Building a robust queue

5 | © 2012 Mobile Interactive Group @ QCON London

Building a wallet
•  Fast

–  Over 10,000 debits / sec (votes)
–  Over 1,000 credits / sec

•  Scalable
–  Double hardware == Double performance

•  Robust / Recoverable
–  Transactions can not be lost
–  Wallet balances recoverable in the event of multi-server failure

•  Auditable
–  Complete transaction history

6 | © 2012 Mobile Interactive Group @ QCON London

Building a wallet - attempt #1
•  Use RIAK Only

–  Keep things simple
–  Less moving parts

•  A wallet per user containing:

–  Previous Balance
–  Transactions with unique IDs
–  Rolling Balance
–  Credits (facebook / itunes)
–  Debits (votes)

Key = dave@mig

Previous Balance = 2

1-abcd-1234 (+5) = 7
1-abcd-1235 (+2) = 9
1-abcd-1236 (-1) = 8

Purchase
 of Credits A Vote

7 | © 2012 Mobile Interactive Group @ QCON London

Building a wallet - attempt #1
•  RIAK = Eventual Consistency

–  In the event of siblings
–  Deterministic due to unique transactions ID’s
–  Merge the documents and store

 Key = dave@mig

Previous Balance = 2

1-abcd-1234 (+5) = 7
1-abcd-1235 (+2) = 9

Key = dave@mig

Previous Balance = 2

1-abcd-1234 (+5) = 7
1-abcd-1236 (-1) = 6

Key = dave@mig

Previous Balance = 2

1-abcd-1234 (+5) = 7
1-abcd-1235 (+2) = 9
1-abcd-1236 (-1) = 8

8 | © 2012 Mobile Interactive Group @ QCON London

Building a wallet - attempt #1

•  Compacting the wallet
–  Periodically
–  In event it grows to large

Key = dave@mig

Previous Balance = 2

1-abcd-1234 (+5) = 7
1-abcd-1235 (+2) = 9
1-abcd-1236 (-1) = 8

…
1-abcd-9999 (+1) = 78

Key = dave@mig

Previous Balance = 78

Compactor

9 | © 2012 Mobile Interactive Group @ QCON London

Building a wallet - attempt #1

•  Our experiences
–  Open to abuse
–  As wallet grows, performance decreases
–  Risk of sibling explosion
–  User can go over drawn

10 | © 2012 Mobile Interactive Group @ QCON London

Building a wallet - attempt #2

•  Introduce REDIS
–  REDIS stores the balance
–  RIAK stores individual transactions

Credit (2)

Key: dave@mig
Value: 78

Key: dave@mig
Value: 80

Debit (1) Key: dave@mig
Value:79

Key = dave@mig:1-abcd-1235
Value: +2

Key = dave@mig:1-abcd-1236
Value: -1

Key = dave@mig:1-abcd-1234
Value: +1

11 | © 2012 Mobile Interactive Group @ QCON London

Building a wallet - attempt #2

•  Keeping it all in sync
–  Periodically compare REDIS and RIAK

•  Disaster Recovery

–  Rebuild all balances in REDIS
–  Using transactions from RIAK

12 | © 2012 Mobile Interactive Group @ QCON London

Building a wallet - attempt #2

•  Our experiences
–  It works
–  Fast 10,000 votes / sec (6 x HP DL385)
–  Used wallet recovery (Data Center Power Fail)

•  The future
–  Possible use of levelDB backend for RIAK
–  Faster wallet recovery

13 | © 2012 Mobile Interactive Group @ QCON London

Battle Stories

•  Building a wallet

•  Optimizing your hardware stack

•  Building a robust queue

14 | © 2012 Mobile Interactive Group @ QCON London

Hardware optimisation

Photograph and Logo © 2010 Time Out Group Ltd.

•  Observed ‘time outs’
 App RIAK DB

•  Developed sophisticated
balancing mechanisms to
code around them, but they
still occurred

•  Especially under load

15 | © 2012 Mobile Interactive Group @ QCON London

Nature of the problem
•  Delayed responses of up to 60 seconds!
•  Our live environment contains:

–  2 x 9 App & RIAK Nodes
–  HP DL385 G6
–  2 x AMD Opteron 2431 (6 cores)

•  We built a dedicated test environment to
get to the bottom of this:

–  3 x App & RIAK Nodes
–  2 x Intel Xeon (8 cores)

Looking for contention…

16 | © 2012 Mobile Interactive Group @ QCON London

Contention options
•  CPU

•  Disk IO

•  Network IO

Less than
60%

utilisation

?

?

17 | © 2012 Mobile Interactive Group @ QCON London

Disk I/O contention?
•  Got SSD drives (10 x access speed)

•  Three independent makes

•  RIAK data directory = SSD

•  Logs, OS, etc = HDD

18 | © 2012 Mobile Interactive Group @ QCON London

Network I/O contention?
•  RIAK cluster is I/O hungry

•  Wired up second NICs

•  Dedicated RIAK VLAN

•  Keep apps traffic on other VLAN

19 | © 2012 Mobile Interactive Group @ QCON London

Divorce!
•  Bought two more servers

•  Separated Apps & RIAK DB

•  APP = Two nodes

•  RIAK = Three nodes
We could have stopped there…

20 | © 2012 Mobile Interactive Group @ QCON London

Memory contention / NUMA
•  Looking at the 60% again

–  Non-Uniform Memory Access (NUMA) is a computer memory design
used in Multiprocessing, where the memory access time depends on the
memory location relative to a processor. - Wikipedia

•  In the 1960s CPUs became faster then memory
•  Race for larger cache memory
•  Cache algorithms
•  Multi processors accessing the same memory leads to

contention and significant performance impact
•  Dedicate memory to processors/cores/threads
•  BUT, - most memory data is required by more then one

process. => ccNUMA
•  Linux threading allocation is challenged
•  Cache-coherence attracts significant overheads, especially

for processes in quick succession!

21 | © 2012 Mobile Interactive Group @ QCON London

Gain control! - NUMACTL
•  Processor affinity – Binds a particular process type to a specific

processor
•  Instruct memory usage to use different banks
•  For example: numactl --cpunodebind 1 –interleave all erl
•  Get it here: apt-get install numactl

•  => No timeouts
•  => 20%+ speed increase when running App & RIAK
•  => Full use of existing hardware

22 | © 2012 Mobile Interactive Group @ QCON London

Battle Stories

•  Building a wallet

•  Optimizing your hardware stack

•  Building a robust queue

23 | © 2012 Mobile Interactive Group @ QCON London

Building a Queue
•  Similar requirements to the wallet

–  Fast
–  Scalable
–  Robust / Recoverable

•  Scheduling
–  Ability to send a message later
–  Retry queues with incrementing delay

•  Throttling
–  Rate at which we process requests
–  Rate at which we can send messages

24 | © 2012 Mobile Interactive Group @ QCON London

Building a Queue - Throttling

RIAK
Cluster

Local
Memory
Queue

(throttle)

Local
Disk

Queue
(retry)

Queue
Manager

UUID
Generator

Request
Receiver

Request

Generate
UUID UUID Persist

Push Pop

Config

Spawn
Worker /
Deliver

ack

update

25 | © 2012 Mobile Interactive Group @ QCON London

Building a Queue -Retry

RIAK
Cluster

Local
Memory
Queue

(throttle)

Local
Disk

Queue
(retry)

Queue
Manager

pop

Spawn
worker /
deliver

update

error

push check for ‘due’ messages

ack

26 | © 2012 Mobile Interactive Group @ QCON London

Building a Queue - Recovery
•  Queue crashes / dies

–  Memory (throttle)
–  Disk (retry)

•  Query RIAK
–  Physical node name (e.g. sender)

•  RIAK provides 3 different techniques
–  Map reduce
–  Key filtering
–  Secondary index’s

Local
Disk /

Memory
Queue

27 | © 2012 Mobile Interactive Group @ QCON London

Building a Queue - Recovery
•  Map reduce

–  Slowest to execute recovery
–  RIAK bitcask backend (very fast)
–  Cost is (1 + N) RIAK operations

(N = Number of nodes)

•  Key filtering
–  Faster to execute than Map reduce
–  RIAK bitcask backend
–  Cost is (1 + 2N) RIAK operations

•  Secondary indexes
–  Fastest to execute recovery
–  RIAK leveldb backend (slower than bitcask)
–  Cost is (1 + N) RIAK operations

Bucket: recovery
Key: abcd-1234-1234
Value:

 node: sender

Bucket: recovery
Key: sender-abcd-1234-1234

Bucket: recovery
Key: abcd-1234-1234
Indexes:

 node: sender

28 | © 2012 Mobile Interactive Group @ QCON London

Building a Queue - Recovery

•  After testing we choose levelDB & Secondary
indexes
–  Good compromise between

•  Speed of running recovery
•  Performance impact on the queues

29 | © 2012 Mobile Interactive Group @ QCON London

Building a Queue - Flow
•  Insert: [bucket: recovery, key: abcd-1234-1234, index: node - receiver]
•  Update: [bucket: recovery, key: abcd-1234-1234, index: node - business logic]
•  Update: [bucket: recovery, key: abcd-1234-1234, index: node - sender]
•  Delete: [bucket: recovery, key: abcd-1234-1234]

Receiver

Q Erlang
Node

Riak Node 1

Q Erlang
Node

Riak Node 2

Q Erlang
Node

Riak Node 3

Business logic Sender

30 | © 2012 Mobile Interactive Group @ QCON London

Building a Queue – Today

•  We have a standalone prototype queue based on
levelDB
–  Undergraduate final year project

•  Pathfinder scheme
•  Dan Fernandez
•  https://github.com/mitadmin/dupQ

31 | © 2012 Mobile Interactive Group @ QCON London

Battle Stories

•  Building a wallet

•  Optimizing your hardware stack

•  Building a robust queue

32 | © 2012 Mobile Interactive Group @ QCON London

David Dawson
+44 7900 005 759
David@MIGcan.com

https://github.com/DangerDawson

Marcus Kern
+44 7932 661 527
Marcus@MIGcan.com

If you’d like to work with or for MIG please contact the MIG Team:

Questions?

Thank You

