Understanding Application Hiccups

and what you can do about them

An introduction to the Open Source jHiccup tool

Gil Tene, CTO & co-Founder, Azul Systems

About me: Gil Tene

- co-founder, CTO@Azul Systems
- Have been working on "think different" GC approaches since 2002
- © Created Pauseless & C4 core GC algorithms (Tene, Wolf)
- A Long history building Virtual & Physical Machines, Operating Systems, Enterprise apps, etc...

working on real-world trash compaction issues, circa 2004

About Azul

- We make scalable Virtual Machines
- Have built "whatever it takes to get job done" since 2002
- 3 generations of custom SMP Multi-core HW (Vega)
- Now Pure software for commodity x86 (Zing)
- "Industry firsts" in Garbage collection, elastic memory, Java virtualization, memory scale

A classic look at response time behavior

Key Assumption: Response time is a function of load

Common fallacies

- Computers run application code continuously
 - CPUs stop processing application code for all sorts of reasons
 - e.g: Interrupts. Scheduling of other work, swapping, etc.
 - Modern system architectures add more: Power management, Virtualization (cross-image context switching, physical VM motion), Garbage Collection, etc.
- Response time can be measured as work units/time.
- Response time exhibits a normal distribution
 - Leading to attempts to represent with average + std. deviation

Response time over time

When we measure behavior over time, we often see:

Application Hiccups

- Where do they come from?
 - Usually a factor of outside of the individual transaction work
 - E.g. Queueing, accumulated work, platform inconsistency
- Do they matter?
 - That depends. What are your end-user's expectations?
 - Hiccups often dominate response time behavior
- How can/should we measure them?
 - Average? Max? 99.9%? Mean with Std. deviation?
- Hiccup magnitude is often not a function of load

What happened here?

Pitfall: Calulating %'iles "naïvely"

Common Example:

- build/buy simple load tester to measure throughput
- issue requests one by one at a certain rate
- measure and log response time for each request
- results log used to produce histograms, percentiles, etc.

So what's wrong with that?

- works well only when all responses fit within in rate interval
- technique includes "automatic backoff" and coordination
- But requirements interested in random, uncoordinated requests
- Bad how bad can this get, really?

Example of naïve %'ile

Naïve characterization: 99.99% below I sec!!!

Proper measurement

Proper characterization: 50% below I second

jHiccup

- A tool for capturing and displaying platform hiccups
 - Records any observed non-continuity of the underlying platform
 - plots results in simple, consistent format
- Simple, non-intrusive
 - As simple as adding the word "jHiccup" to your java launch line
 - % jHiccup java myflags myApp
 - Adds a background thread that samples time @ 1000/sec
- Open Source
 - released to the public domain, creative commons CCO

what jHiccup measures

- JHiccup measures the platform, not the application
 - Experiences whatever delays application threads would see
 - Highlights inconsistency in platform execution of "nothing"
 - No attempt to identify cause (e.g. scheduling, GC, swapping, etc.)
- An application cannot behave better than it's platform
 - If the platform stalls, the application stalled as well.
 - jHiccup provides a lower bound for "best application behavior"
- Useful control measurements
 - © Comparing jHiccup results for an idle application running on the same platform, at the same time, narrows down behavior to process-specific artifacts (-c option)

The anatomy of Hiccup Charts

Telco App Example

Max Time per interval

Optional SLA plotting

Hiccup duration at percentile levels

How jHiccup works

- Background thread, measures time to do "nothing"
 - Sleeps for 1 milliseconds, allocates 1 object, records time gap
 - Collects detailed "floating point" histogram of observed times
 - Constant, small memory footprint, virtually no cpu load
 - No effect on application threads
- Outputs two files
 - A time-based log with 1 line per interval (default 5 sec interval).
 - A percentile distribution log of accumulated histogram data
- Spreadsheet imports files and plots data
 - A standard, simple chart format

%'iles

Computing percentiles

- Sleeps for 1 milliseconds, allocates 1 object, records time gap
- Collects detailed "floating point" histogram of observed times
- Constant, small memory footprint, virtually no cpu load
- No effect on application threads

Outputs two files

- A time-based log with 1 line per interval (default 5 sec interval).
- A percentile distribution log of accumulated histogram data

Spreadsheet imports files and plots data

A standard, simple chart format

Some fun with jHiccup

Examples

Idle App on Quiet System

Idle App on Busy System

Idle App on Quiet System

Idle App on Dedicated System

A 1GB Java Cache under load

Telco App

Fun with jHiccup

Charles Nutter @headius

20 Jan

jHiccup, @AzulSystems' free tool to show you why your JVM sucks compared to Zing: bit.ly/wsH5A8 (thx @bascule)

13 Retweeted by Gil Tene

Obviously, we can use it for comparison purposes

Zing 5, 1GB in an 8GB heap

Oracle HotSpot CMS, 1GB in an 8GB heap

Zing 5, 1GB in an 8GB heap

Oracle HotSpot CMS, 1GB in an 8GB heap

Oracle HotSpot CMS, 4GB in a 18GB heap

Oracle HotSpot CMS, 1GB in an 8GB heap

http://www.azulsystems.com

http://www.azulsystems.com/dev_resources/jhiccup