Understanding Application
Hiccups

and what you can do about them

An infroduction to the Open Source jHiccup tool

Gil Tene, CTO & co-Founder, Azul Systems

SSSSSSSS

About me: Gil Tene

@ co-founder, CTO
@Azul Systems

@ Have been working on
"think different” GC
approaches since 2002

® Created Pauseless & C4

core GC algorithms
(Tene, Wolf)

@ A Long history building
Virtual & Physical
Machines, Operating
Systems, Enterprise
apps, efc...

©2011 Azul Systems, Inc.

* working on real-world trash compaction issues, circa 2004

About Azul

® We make scalable Virtual
Machines

& Have built "whatever it takes
to get job done” since 2002

@ 3 generations of custom SMP
Multi-core HW (Vega)

@ Now Pure software for
commodity x86 (Zing)

@ “Industry firsts” in Garbage
collection, elastic memory,
Java virtualization, memory
scale OO

©2011 Azul Systems, Inc.

AZUL

SYSTEMS®

A classic look at response
time behavior

Key Assumption: Response ftime is a function of load

Response |
time

C Unacceptable (poor) response time

B Acceptable response time

;. decreasing resource 'ammty_ ,

* source: IBM CICS server docuementation, “unders’randing response times” AZUL

SSSSSSS

Common fallacies

@ Computers run application code continuously

@ CPUs stop processing application code for all sorts of reasons
o e.g: Interrupts. Scheduling of other work, swapping, etc.

® Modern system architectures add more: Power management,
Virtualization (cross-image context switching, physical VM motion),
Garbage Collection, efc.

@ Response time can be measured as work units/time.

@ Response time exhibits a normal distribution

@ Leading to attempts to represent with average + std. deviation

SSSSSSS

Response time over time

When we measure behavior over time, we often see:

second

M =M1

a
i: L
!
lﬂ
=
o

IWNGT 3!

5

arver REe

g
a

250 275 300 325
imeiSeconds)

m validate_user_login ® create_schedule & update_user_details « Active User Count

* source: ZOHO QEngine White Paper: performance testing report analysis azuL

SYSTEMS
©2011 Azul Systems, Inc.

Application Hiccups

® Where do they come from?

@ Usually a factor of outside of the individual transaction work

o E.g: Queueing, accumulated work, platform inconsistency

@ Do they matter?

@ That depends. What are your end-users expectations?

@ Hiccups often dominate response time behavior

® How can/should we measure them?

@ Average? Max? 99.9%? Mean with Std. deviation?

@ Hiccup magnitude is often not a function of load

SSSSSSS

What happened here?

Hiccups by Time Interval

“l-liccups"

_.".f‘ —990% =99.99% =—Max

9000
__ 8000
(&)
8 7000
=
— 6000
[=
-2 5000
©

S 4000
()

g
ol I Y I I O O
1 Y A I O

20 40 60 120 140

0

Elapsed Time (sec)

* Source: Gil running an idle program and suspending it five times in the middle szuL

SSSSSSS

Pitfall: Calulating %’iles "naively”

@ Common Example:

D

D

d

D

build/buy simple load tester to measure throughput
ISsue requests one by one at a certain rafe
measure and log response time for each request

results log used to produce histograms, percentiles, etc.

@ So whats wrong with that?

D

d

D

works well only when all responses fit within in rate interval
technique includes “automatic backoff” and coordination

But requirements interested in random, uncoordinated requests

@ Bad how bad can this get, really?

SSSSSSS

100

Response time
N w By 6] (o)) ~J o0 (o)
o o o o o o o o

-
o

o

Example of naive %’ile

System easily handles System Sta”ed
100 requests/sec
for 100 Sec

Responds to each
in Imsec

How would you characterize this system?

Nalve results:

10,000 @ Imsec | @ 100 second
‘
| msec
50 100 150 200 250
Elapsed Time

Nalve characterization: 99.99% below | sec !!!

Response time

Proper measurement

100

00 System easily handles System Stalled
100 requests/sec for 100 Sec
80 A
Responds to each
" in Imsec

D
o

N
o

H
o

10,000 results
Varying linearly

w
o

from 100 sec
10,000 results /
20 to 10 msec
@ | msec each
0
0 50 100 150 200 250
Elapsed Time

Proper characterization: 50% below | second

JHiccup

@ A tool for capturing and displaying platform hiccups

@ Records any observed non-continuity of the underlying platform

@ plots results in simple, consistent format

@ Simple, non-infrusive

@ As simple as adding the word "jHiccup” to your java launch line
@ % jHiccup java myflags myApp
@ Adds a background thread that samples time @ 1000/sec

@ Open Source

o released to the public domain, creative commons CCO

SSSSSSS

what jHiccup measures

@ jHiccup measures the platform, not the application

@ Experiences whatever delays application threads would see
@ Highlights inconsistency in platform execution of “nothing”

@ No attempt to identify cause (e.g. scheduling, GC, swapping, etc.)

@ An application cannot behave better than its platform

@ If the platform stalls, the application stalled as well.

@ jHiccup provides a lower bound for “best application behavior”

® Useful control measurements

@ Comparing jHiccup results for an idle application running on the
same platform, at the same time, narrows down behavior to
process-specific artifacts (-c option)

SSSSSSS

The anatomy of Hiccup Charts

SSSSSSS

©2011 Azul Systems, Inc.

N

Hiccup Duration (msgt

Hiccup Duration (gise

Telco App Example

Hiccups by Time Interval

- —
i--\I_

J_II

|\|\-m—m—m

Illllll

LI
0

.n.“. “nl‘lm ANUAMN W

1000 1500
Elapsed Time (sec)

_ r_~|‘-|iccupS by Percentile Distribution)

99% 99.9% 99.99% 99.999%

Percentile

====Hiccups by Percentile

99.9999%

AZUL

SYSTEMS

©2011 Azul Systems, Inc.

=
(o8] o
o o
o o

Hiccup Duration (msec)

[EEN
B (o)) (o8] o
o o o o
o o o o

Hiccup Duration (msec)

Hiccups by Time Interval

a— 0, L) [*) L)

l

/ L

T T T 1

800 1000 1200 1400
Elapsed Time (sec)

Hiccups by Percentile Distribution

Max=967.68

T T

99.9% 99.99%

Percentile

T

99.999%

AZUL

SYSTEMS

How jHiccup works

@ Background thread, measures time to do “nothing”

@ Sleeps for 1 milliseconds, allocates 1 object, records time gap
@ Collects detailed “floating point” histogram of observed times
@ Constant, small memory footprint, virtually no cpu load

@ No effect on application threads

@ Outputs two files

@ A time-based log with 1 line per interval (default 5 sec interval).

@ A percentile distribution log of accumulated histogram data

@ Spreadsheet imports files and plots data

@ A standard, simple chart format

SSSSSSS

%'iles

@ Computing percentiles

@ Sleeps for 1 milliseconds, allocates 1 object, records time gap
@ Collects detailed “floating point” histogram of observed times
@ Constant, small memory footprint, virtually no cpu load

@ No effect on application threads

@ Outputs two files

@ A time-based log with 1 line per interval (default 5 sec interval).

@ A percentile distribution log of accumulated histogram data

@ Spreadsheet imports files and plots data

@ A standard, simple chart format

SSSSSSS

iy
A
i e W e Pl
= i i ¥ Y
x iy o J
] =

o, g o P

T N

-,

iy
A
b e W e Pl
] i i ¥ L
. i "]
i 2

ok, o g 0

T N

-,

©2011 Azul Systems, Inc.

|dle App on Quiet System |dle App on Busy System

Hiccups by Time Interval Hiccups by Time Interval

——Max per Interval ===99% ===99.90% ===99.99% ===Max —Max per Interval ===99% ===99.90% ===99.99% ===Max

N

v
D
o

N

o
Ul
o

N
o

[ER
2]

=
o

N
o

Hiccup Duration (msec)

(5]

Hiccup Duration (msec)
w
o

=
o

T
Lo WV

400
Elapsed Time (sec)

o

Hiccups by Percentile Distribution

D
o

N

o
Ul
o

Max=49.728

=

(6]
N
o

N
o

Hiccup Duration (msec)

/

99% 99.9% 99.99% 99.999% 90% 99% 99.9% 99.99% 99.999%

Hiccup Duration (msec)
w
o

=
o

/

Percentile Percentile

AZUL

SYSTEMS

Hiccup Duration (msec)

Hiccup Duration (msec)

N
o

[E
52

=
o

(65}

|dle App on Quiet System

Hiccups by Time Interval

—— Max per Interval

==99%

==99.90%

===00.99% ==Max

/

99%

99.9%

Percentile

99.99%

99.999%

Hiccup Duration (msec)

Hiccup Duration (msec)

o
© w ©
w a >

o o
N ¥
a N ;g

o
o ©
o G R

© o o
() w >

o©
=

|dle App on Dedicated System

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

T T T

500 600 700
Elapsed Time (sec)

Hiccups by Percentile Distribution

Max=0.411

[

—J

99.9% 99.99% 99.999%

Percentile

AZUL

SYSTEMS

A 1GB Java Cache under load

Hiccups by Time Interval

——Max per Interval ===99% ===99.90% ===99.99% =—=Max

1000

500 1000 1500 2000
Elapsed Time (sec)

Hiccups by Percentile Distribution

3500
Max=3448.832 j

/

1500

/

=
o
o
o

/

Hiccup Duration (msec)
o
o
o

/

500

/

0%

90%

99% 99.9% 99.99% 99.999% 99.9999%

Percentile

Telco App

msec)

(

[E
N
o
o

Hiccup Duration

1800

Hiccups by Time Interval

— Max per Interval ===99% ===99.90% ===99.99% ===MaXx

1600

1400

1000

800

400

200

200 400 600 800 1000 1200 1400 1600 1800
Elapsed Time (sec)

Hiccup Duration (msec)

Hiccups by Percentile Distribution

1800

1600

Max=1665.024 7~

1400

=
N
o
o

/

1000

/

/

800

yd

600
400

200

/

0%

90% 99% 99.9% 99.99% 99.999%

Percentile

Fun with jHiccup

Charles Nutter « headius 20 Jan
\ jHiccup, @AzulSystems' free tool to show you why your JVM sucks

compared to Zing: bit.ly/wsH5A8 (thx @bascule)

L3 Retweeted by Gil Tene

SSSSSSS

Obviously, we can use it for
comparison purposes

SSSSSSS

Zing 5, 1GB in an 8GB heap Oracle HotSpot CMS, 1GB in an 8GB heap

Hiccups by Time Interval Hiccups by Time Interval

——Max per Interval ===99% ===99.90% ===99.99% ===Max —Max per Interval ===99% ===99.90% ===99.99% ===Max

Hiccup Duration (msec)

1000 1500 2000 i i 500 1000 1500 2000 2500 3000 3500
Elapsed Time (sec) Elapsed Time (sec)

o

Hiccups by Percentile Distribution

Hiccup Duration (msec)
Hiccup Duration (msel) 1

90% 99% 99.9% 99.99% 99.999% 99.9999% 99.9% 99.99% 99.999%

Percentile Percentile

AZUL

SYSTEMS

Hiccup Duration (msec)

Hiccup Duration (msec)

Zing 5, 1GB in an 8GB heap

Hiccups by Time Interval

——Max per Interval ===99% ===99.90% ===99.99% ===Max

1000 1500 2000 2500 3000 3500
Elapsed Time (sec)

Hiccups by Percentile Distribution

99.9% 99.99% 99.999% 99.9999%

Percentile

Hiccup Duration (msec)

Hiccup Duration (msec)

B D (o)
o o o
o o o
o o o

N
o
o
o

o

Oracle HotSpot CMS, 1GB in an 8GB heap

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

500 1000 1500 2000 2500 3000 3500
Elapsed Time (sec)

Hiccups by Percentile Distribution

99.9% 99.99% 99.999%

Percentile

AZUL

SYSTEMS

tion (msec)

iccup Dura

Oracle HotSpot CMS, 4GB in a 18GB heap

Hiccups by Time Interval

——Max per Interval ===99% ===99.90% ===99.99% ===Max

e

|

A A
L T L

1000 1500 2000 2500 3000 3500
Elapsed Time (sec)

Hiccups by Percentile Distribution

Max=40173.568

99.9% 99.99% 99.999%

Percentile

Hiccup Duration (msec)

Hiccup Duration (msec)

Oracle HotSpot CMS, 1GB in an 8GB heap

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

500 1000 1500 2000 2500 3000 3500
Elapsed Time (sec)

Hiccups by Percentile Distribution

99.9% 99.99% 99.999%

Percentile

AZUL

SYSTEMS

©2011 Azul Systems, Inc.

http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com

