Understanding Application
Hiccups

and what you can do about them

An infroduction to the Open Source jHiccup tool

Gil Tene, CTO & co-Founder, Azul Systems
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About me: Gil Tene

@ co-founder, CTO
@Azul Systems

@ Have been working on
"think different” GC
approaches since 2002

® Created Pauseless & C4

core GC algorithms
(Tene, Wolf)

@ A Long history building
Virtual & Physical
Machines, Operating
Systems, Enterprise
apps, efc...
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* working on real-world trash compaction issues, circa 2004



About Azul

® We make scalable Virtual
Machines

& Have built "whatever it takes
to get job done” since 2002

@ 3 generations of custom SMP
Multi-core HW (Vega)

@ Now Pure software for
commodity x86 (Zing)

@ “Industry firsts” in Garbage
collection, elastic memory,
Java virtualization, memory
scale OO

©2011 Azul Systems, Inc.
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A classic look at response
time behavior

Key Assumption: Response ftime is a function of load

Response |
time

C Unacceptable (poor) response time

B Acceptable response time

;. decreasing resource 'ammty_ ,

* source: IBM CICS server docuementation, “unders’randing response times” AZUL
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Common fallacies

@ Computers run application code continuously

@ CPUs stop processing application code for all sorts of reasons
o e.g: Interrupts. Scheduling of other work, swapping, etc.

® Modern system architectures add more: Power management,
Virtualization (cross-image context switching, physical VM motion),
Garbage Collection, efc.

@ Response time can be measured as work units/time.

@ Response time exhibits a normal distribution

@ Leading to attempts to represent with average + std. deviation
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Response time over time

When we measure behavior over time, we often see:
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Application Hiccups

® Where do they come from?

@ Usually a factor of outside of the individual transaction work

o E.g: Queueing, accumulated work, platform inconsistency

@ Do they matter?

@ That depends. What are your end-users expectations?

@ Hiccups often dominate response time behavior

® How can/should we measure them?

@ Average? Max? 99.9%? Mean with Std. deviation?

@ Hiccup magnitude is often not a function of load
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What happened here?

Hiccups by Time Interval
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* Source: Gil running an idle program and suspending it five times in the middle szuL
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Pitfall: Calulating %’iles "naively”

@ Common Example:

D

D

d

D

build/buy simple load tester to measure throughput
ISsue requests one by one at a certain rafe
measure and log response time for each request

results log used to produce histograms, percentiles, etc.

@ So whats wrong with that?

D

d

D

works well only when all responses fit within in rate interval
technique includes “automatic backoff” and coordination

But requirements interested in random, uncoordinated requests

@ Bad how bad can this get, really?
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Example of naive %’ile

System easily handles System Sta”ed
100 requests/sec
for 100 Sec

Responds to each
in Imsec

How would you characterize this system?

Nalve results:

10,000 @ Imsec | @ 100 second
‘
| msec
50 100 150 200 250
Elapsed Time

Nalve characterization: 99.99% below | sec !!!



Response time

Proper measurement

100

00 System easily handles System Stalled
100 requests/sec for 100 Sec
80 A
Responds to each
" in Imsec
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10,000 results
Varying linearly

w
o

from 100 sec
10,000 results /
20 to 10 msec
@ | msec each
0
0 50 100 150 200 250
Elapsed Time

Proper characterization: 50% below | second



JHiccup

@ A tool for capturing and displaying platform hiccups

@ Records any observed non-continuity of the underlying platform

@ plots results in simple, consistent format

@ Simple, non-infrusive

@ As simple as adding the word "jHiccup” to your java launch line
@ % jHiccup java myflags myApp
@ Adds a background thread that samples time @ 1000/sec

@ Open Source

o released to the public domain, creative commons CCO
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what jHiccup measures

@ jHiccup measures the platform, not the application

@ Experiences whatever delays application threads would see
@ Highlights inconsistency in platform execution of “nothing”

@ No attempt to identify cause (e.g. scheduling, GC, swapping, etc.)

@ An application cannot behave better than its platform

@ If the platform stalls, the application stalled as well.

@ jHiccup provides a lower bound for “best application behavior”

® Useful control measurements

@ Comparing jHiccup results for an idle application running on the
same platform, at the same time, narrows down behavior to
process-specific artifacts (-c option)
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The anatomy of Hiccup Charts
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How jHiccup works

@ Background thread, measures time to do “nothing”

@ Sleeps for 1 milliseconds, allocates 1 object, records time gap
@ Collects detailed “floating point” histogram of observed times
@ Constant, small memory footprint, virtually no cpu load

@ No effect on application threads

@ Outputs two files

@ A time-based log with 1 line per interval (default 5 sec interval).

@ A percentile distribution log of accumulated histogram data

@ Spreadsheet imports files and plots data

@ A standard, simple chart format
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%'iles

@ Computing percentiles

@ Sleeps for 1 milliseconds, allocates 1 object, records time gap
@ Collects detailed “floating point” histogram of observed times
@ Constant, small memory footprint, virtually no cpu load

@ No effect on application threads

@ Outputs two files

@ A time-based log with 1 line per interval (default 5 sec interval).

@ A percentile distribution log of accumulated histogram data

@ Spreadsheet imports files and plots data

@ A standard, simple chart format
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|dle App on Quiet System |dle App on Busy System

Hiccups by Time Interval Hiccups by Time Interval
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|dle App on Dedicated System
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A 1GB Java Cache under load

Hiccups by Time Interval
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Telco App
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Fun with jHiccup

Charles Nutter « headius 20 Jan
\ jHiccup, @AzulSystems' free tool to show you why your JVM sucks

compared to Zing: bit.ly/wsH5A8 (thx @bascule)

L3 Retweeted by Gil Tene
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Obviously, we can use it for
comparison purposes
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Zing 5, 1GB in an 8GB heap Oracle HotSpot CMS, 1GB in an 8GB heap
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Hiccup Duration (msec)
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Zing 5, 1GB in an 8GB heap
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Oracle HotSpot CMS, 1GB in an 8GB heap
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Oracle HotSpot CMS, 4GB in a 18GB heap
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Oracle HotSpot CMS, 1GB in an 8GB heap
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