
Banking Case study: Scaling 
with low latency using 

NewSQL 
 Jags Ramnarayan (VMWare) 
Jim Bedenbaugh (VMWare) 

 
Qcon 2012 



Agenda 
Business Requirements 

Operational data 
Analysis 

Problem Statement 
Scaling pain 

Introduction to SQLfire   
Driving principles in SQLFire 
Use cases 
Demo (partitioned regions, colocation, etc) 
Data-aware procedures concepts 
Consistency model 
Shared-nothing disk persistence  



Business Requirements: What are they after? 

A large regional bank in the Northeastern U.S.  
Collects large amounts of operational data 

By region and branch 
Significant number of attributes associated with 
each transaction 

Drive thru or foot traffic 
Transaction type 
Product types 
Time of day 



Business Requirements: What are they after? (con’t) 

Analysis 
The data is analyzed to determine the staffing 
requirements for each branch and region. These 
requirements yield guidance on: 

Number of staff needed 
Skills needed  
Hours of operation 

 
 



	
  	
  

Confiden(al	
  

“Right now our database is only 32G 
but...	
  

“We are constantly acquiring new 
banks…	
  

“And this database is growing rapidly…”	
  

“And it takes at least a week to get new 
resources and this is just too slow.”	
  

So what seems to be the problem? 



Vertical Scaling has led to The “Jenga Architecture” 

“We can only scale one way: Vertically. We want to scale 
horizontally but the vendor wants a pile of money to put 
in a new solution. When we need more resources, all we 
can do is jam in more memory and hang more drives off 
the same machine, but we’re getting at the end of that 
road. We need another solution.”     



How did they arrive in this predicament? 

Poor planning: “We just didn’t think about how this data is 
used or how much we would end up collecting over time.” 

Doing it on the cheap: “We were locked into one database 
vendor and the original implementation was cheap to do 

with their low end database.” 

Clustering: “Our team isn’t really all that sophisticated in 
doing these kinds of databases.  An awful lot of our data 

lives on the mainframe.” 



The	
  introduc(on	
  of	
  SQLfire…	
  



Replicated, partitioned tables in 
memory. Redundancy through 
memory copies. Data resides on 
disk when you explicitly say so 

Powerful SQL engine: 
standard SQL for select, DML 

DDL has SQLF extension 

Leverages GemFire data grid 
engine. 

 

And how does SQLfire ease my pain? 



Scaling at the speed of thought 

Consistency model is 
FIFO, Tunable. 

 Distributed transactions 
without global locks 

Applications 
access the 
distributed DB 
using JDBC, 
ADO.NET 



Asynchronous replication over WAN 

Synchronous replication within 
cluster 

Clients failover, failback 

Easily integrate with existing DBs  
- caching framework to read through, write through or write 
behind 

Scaling at the speed of thought 



"Data aware procedures“ -  standard Java stored 
procedures with "data aware" and parallelism 
extensions 

When nodes are added, data and behavior is 
rebalanced without blocking current clients 

Scaling at the speed of thought 



The Partitioning Strategy: How we chose… 

CREATE TABLE FLIGHTS 
   ( 
     FLIGHT_ID CHAR(6) NOT NULL , 
   REGION INTEGER NOT NULL, 

     SEGMENT_NUMBER INTEGER NOT NULL , 
     ORIG_AIRPORT CHAR(3), 
     DEPART_TIME TIME, … ) 

PARTITION BY COLUMN(REGION)  
REDUNDANCY 1 
PERSISTENT; 



Partitioning: The Result 
What it looked like:  

2x48G VM with 2 processors 
Data Partitioned and Replicated 
Split: 13 million rows/ 9 million rows 

What happened when we added another VM 
Added 48g 2 processor 
Data rebalanced across 3 partitions: 8 million/6 million/8 million 

How it performed 
We ran side by side comparisons of and existing SQL statement. 
The existing server took nearly 20 minutes to complete 
The SQLfire version completed in under 1 minute. 

The benefit of partitioning is that we can go to a single partition and retrieve data 
instead of a table scan. 

 



No	
  

Hashing	
  is	
  performed	
  on	
  the	
  Java	
  
implementa(on	
  of	
  the	
  column’s	
  type.	
  

Is	
  par((oning	
  
declared?	
  

Use	
  explicit	
  direc(ves	
  Yes	
  

Are	
  there	
  foreign	
  	
  

keys?	
  

Yes	
   referenced	
  table	
  
par((oned	
  on	
  the	
  foreign	
  

key?	
  

Is	
  the	
  	
  

	
   Colocate	
  with	
  
referenced	
  table	
  

Yes	
  

No	
  

Is	
  there	
  a	
  primary	
  	
  

key?	
  

No	
  

Are	
  there	
  UNIQUE	
  
columns?	
  

Par((on	
  by	
  primary	
  
key	
  

Yes	
  

Par((on	
  by	
  the	
  first	
  
UNIQUE	
  column	
  

Yes	
  

Par((on	
  by	
  internally	
  
generated	
  row	
  id	
  No	
  

If	
  no	
  PARTITION	
  BY	
  clause	
  is	
  specified,	
  GemFire	
  
SQLF	
  will	
  automaBcally	
  parBBon	
  and	
  collocate	
  

tables	
  based	
  on	
  this	
  algorithm.	
  

Start	
  



Reac(ons	
  to	
  the	
  implementa(on	
  

The DBA’s had the Grumpy Old Man response:  
 
 
 
 
 
 
 
 
 

“Hey you kids get off my grass!” 



Reac(ons	
  to	
  the	
  implementa(on	
  

Management response:  
 
 
 
 
 
 
 
 
 

“Where do we sign?” 



Reac(ons	
  to	
  the	
  implementa(on	
  

Business response:  
 
 
 
 
 
 
 
 
 

“Where do we sign?” 



Reac(ons	
  to	
  the	
  implementa(on	
  

Developers response:  
 
 
 
 
 
 
 
 
 

“What? We have to modify existing SQL? This just doesn’t drop in?” 



Conversion Gotchas and Tips… 
DDL. It’s different for Derby. DB2 has all kinds of options and 
parameters. Use a hatchet, not scissors when editing. I wrote a few 
scripts to rip out a lot of the DB2 DDL. It’s just not needed.   

Data types: Map them before you convert the DDL. Write a script to 
convert them.  

Data conversion: SQLfire has a neat import procedure 
SYSCS_UTIL.IMPORT_TABLE. Use it. I always requested CSV files and 
split them up into chunks in case anything went wrong. 

Use JDBCRowloader for read misses. Comes with SQLfire.  
Use DDLUtils for DDL conversion. 
Cannot use Stored Procedures. Rewrite as Java Stored Procedure 
 



	
  SQLFire	
  Driving	
  Principles	
  

Undifferentiated features in next gen databases - 

Horizontal scalability, high availability 

NoSQL data models less rigid but most now support some form 
of SQL – cql, un-ql, oql, etc


SQL : Flexible, easily understood, strong type system 

     essential for query engine efficiency


 

Focus on commodity servers; 

Memory density follows Moore’s law


Optimize for memory; Focus on large Not “Big data” 



	
  SQLFire	
  Driving	
  Principles	
  

Exploit data affinity for parallel processing; offer new APIs

- App developer is the new DBA


Data is flowing.. Work with relevant, “NOW” data 

Not Just High Availability.. Continuous availability

Synchronous copies in proximity.. Async copies across WAN 

Consistency should be tunable

 Eventual consistency is too difficult for the average developer


Write(A,2)  Read(A) may return 1 or (1,2)  



DESIGN	
  PATTERNS	
  

	
  	
  
	
  



“Write	
  thru”	
  Distributed	
  caching	
  

Pre-load using DDLUtils 
for queries 

 
Lazily load using “RowLoader” for PK 

queries 
 

Configure LRU eviction or expiry for 
large data 

 
“Write thru” – participate in container 

transaction	
  



Distributed	
  caching	
  with	
  Async	
  writes	
  to	
  DB	
  

Buffer high write rate from DB 
 

Writes can be enqueued in memory 
redundantly on multiple nodes 

 
Or, also be persisted to disk on each 

node 
 

Batches can be conflated and written 
to DB 

 
Pattern for “high ingest” into Data 

Warehouse	
  



As	
  a	
  scalable	
  OLTP	
  data	
  store	
  

 
Shared nothing persistence to disk 

Backup and recovery 
 

No Database to configure and be throttled by	
  



As	
  embedded,	
  clustered	
  Java	
  database	
  

Just deploy a JAR or WAR into clustered App 
nodes 

 
Just like H2 or Derby except data can be 
sync’d with DB is partitioned or replicated 

across the cluster 
	
  

Low cost and easy to manage 



To	
  process	
  app	
  behavior	
  in	
  parallel	
  

 
Map-reduce but based on simpler RPC 



To	
  make	
  data	
  visible	
  across	
  sites	
  in	
  real	
  (me	
  



Demo  
default partitioned tables, colocation, persistent tables 

FLIGHTS
---------------------------------------------

      FLIGHT_ID CHAR(6) NOT NULL ,
      SEGMENT_NUMBER INTEGER NOT NULL ,
      ORIG_AIRPORT CHAR(3),
      DEPART_TIME TIME,
…..

PRIMARY KEY (FLIGHT_ID,                        
SEGMENT_NUMBER)

FLIGHTAVAILABILITY
---------------------------------------------

 FLIGHT_ID CHAR(6) NOT NULL ,
  SEGMENT_NUMBER INTEGER NOT NULL ,
  FLIGHT_DATE DATE NOT NULL ,
  ECONOMY_SEATS_TAKEN INTEGER ,
…..

PRIMARY KEY ( FLIGHT_ID,
   SEGMENT_NUMBER,
   FLIGHT_DATE))

FOREIGN KEY (FLIGHT_ID,
            SEGMENT_NUMBER)
         REFERENCES FLIGHTS (
            FLIGHT_ID,
            SEGMENT_NUMBER)

FLIGHTHISTORY
---------------------------------------------

      FLIGHT_ID CHAR(6),
      SEGMENT_NUMBER INTEGER,
      ORIG_AIRPORT CHAR(3),
      DEPART_TIME TIME,
      DEST_AIRPORT CHAR(3),
…..

1 – M 

 1 – 1 

SEVERAL CODE/DIMENSION TABLES
---------------------------------------------

AIRLINES: AIRLINE INFORMATION (VERY STATIC)
COUNTRIES : LIST OF COUNTRIES SERVED BY FLIGHTS
CITIES: 
MAPS: PHOTOS OF REGIONS SERVED



Demo	
  –	
  Start	
  with	
  replicated	
  tables	
  
replicated	
  tables	
  



Demo	
  –	
  Par((on	
  the	
  “fact”	
  tables	
  



Demo	
  –	
  Add	
  a	
  new	
  server	
  and	
  rebalance	
  



Demo	
  –	
  HA	
  



Say, Flights and FlightAvailability both were hash partitioned on PK 
 

Select * from Flights f, FlightAvailability fa 
where f.flight_id = fa.flight_id  

and f.flight_id ='xxx‘ and fa.seats_taken > yy; 

•  With Hash partitioning the join would have to execute everywhere 

•  Distributed joins are expensive and inhibit scaling 
–  joins across distributed nodes could involve distributed locks and 

potentially a lot of intermediate data transfer across nodes 

Linearly scaling joins 



Designer thinks about how data maps to partitions 
–  The main idea is to: 

1)  minimize excessive data distribution by keeping the 
most frequently accessed and joined data collocated on 
partitions 

2)  Collocate transaction working set on partitions so 
complex 2-phase commits/paxos commit is eliminated or 
minimized. 

Read Pat Helland’s “Life beyond Distributed Transactions” and the 
Google MegaStore paper 

Partition Aware DB Design 



1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
7	
  
8	
  
9	
  
10	
  

Collocate	
  Data	
  For	
  Fast	
  Joins.	
  
	
  	
  CREATE	
  TABLE	
  FlightAvailability	
  

	
  	
  	
  	
  	
  (flight_id	
  ..,	
  	
  
	
  	
  	
  	
  	
  segment	
  ..,	
  date	
  ..)	
  
PARTITION	
  BY	
  
	
  	
  	
  	
  	
  COLUMN	
  (flight_id)	
  
	
  	
  	
  	
  	
  COLOCATE	
  WITH	
  Flights;	
  

SQLFire	
  Node	
  1	
  

FltAvailability	
  1	
  

SQLFire	
  Node	
  2	
  

FltAvailability	
  2	
  

Replica	
  

Replica	
  

Flight	
  1	
  

Flight	
  2	
  SQLFire	
  can	
  join	
  
tables	
  without	
  
network	
  hops.	
  

C1	
  

C2	
  

Related	
  data	
  placed	
  
on	
  the	
  same	
  node.	
  



	
  	
   SQLFire	
  Node	
  1	
  

FltAvailability	
  1	
  

SQLFire	
  Node	
  2	
  

FltAvailability	
  2	
  

Replica	
  

Replica	
  

Flight	
  1	
  

Flight	
  2	
  SQLFire	
  can	
  join	
  
tables	
  without	
  
network	
  hops.	
  

C1	
  

C2	
  

Related	
  data	
  placed	
  
on	
  the	
  same	
  node.	
  

Select * from 
Flights f, FlightAvailability fa 

where <equijoin  clause> 
and f.flight_id =‘UA765'; 

 

Collocate	
  Data	
  For	
  Fast	
  Joins.	
  

Query	
  
pruned

	
  to	
  nod
e	
  1	
  



	
  	
   SQLFire	
  Node	
  1	
  

FltAvailability	
  1	
  

SQLFire	
  Node	
  2	
  

FltAvailability	
  2	
  

Replica	
  

Replica	
  

Flight	
  1	
  

Flight	
  2	
  

In	
  parallel,	
  each	
  node	
  does	
  hash	
  join,	
  aggrega[on	
  locally	
  

C1	
  

C2	
  

Related	
  data	
  placed	
  
on	
  the	
  same	
  node.	
  

SELECT sum(fa.seats_taken), 
f.orig_airport, fa.date  

FROM flights f, FltAvailability fa 
WHERE <equijoin>  

GROUP By fa.date, f.orig_airport 
ORDER BY fa.date, f.orig_airport 

DESC 
 

Collocate	
  Data	
  For	
  Fast	
  Joins.	
  

Parallel	
  sca^er-­‐gather	
  



Partitioning and redundancy 
  

Redundancy = 2 
(but tunable)	
  

Single owner 
for any row at point in 

time	
  

Replication can be “rack 
aware”	
  

Replication is 
synchronous but done in 

parallel 
	
  



Data-Aware Stored Procs 
•  Procedure execution routed to the data 
•  Full scaled-out execution 
•  Highly available 
•  Use pure Java to access/store data 
•  Demo later on 

Like Map/Reduce But Different	
  



1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
7	
  
8	
  
9	
  
10	
  

Scaling	
  Stored	
  Procedures	
  
	
  	
  CALL	
  maxSales(arguments)	
  

	
  ON	
  TABLE	
  sales	
  
WHERE	
  (Loca(on	
  in	
  (‘CA’,’WA’,’OR')	
  

WITH	
  RESULT	
  PROCESSOR	
  
	
  maxSalesReducer	
  
	
  	
  

SQLFire	
  uses	
  data-­‐	
  
aware	
  rou[ng	
  to	
  

route	
  processing	
  to	
  
the	
  data.	
  

maxSales	
  on	
  
local	
  data	
  

maxSales	
  on	
  
local	
  data	
  

maxSalesReducer	
  

Result	
  Processors	
  
give	
  map/reduce	
  
func[onality.	
  



Scalability: Consistency 
With Transactions	
   And Without	
  

-  Row updates always  
atomic and isolated 

-  FIFO consistency 
 
	
  

-  Distributed transactions 
with 1-phase commit 
-  Coordinator per node 
-  Eager locking + Fail 

fast 
	
  

Assumes: 
Most x-actions small in space and time 

Write-write conflicts rare 



•  Parallel log structured 
storage 

•  Each partition writes in 
parallel 

•  Backups write to disk 
also 
–  Increase reliability 

against h/w loss 

Scalability: High performance persistence 

Memory
Tables

Append only 
Operation logs

OS Buffers

LOG 
Compressor

Record1

Record2

Record3

Record1

Record2

Record3

Memory
Tables

Append only 
Operation logs

OS Buffers

LOG 
Compressor

Record1

Record2

Record3

Record1

Record2

Record3



How does it scale for queries? 

N =	
   2	
   4	
   6	
   8	
   10	
  

200k	
  

420k	
  

604k	
  

790k	
  

1M	
  
Partitioned Table 

PK queries per second 
(1kb Rows)	
  

Number Of Servers	
  

# Clients = 2*N 
200	
  

400	
  

600	
  

800	
  

1000	
  



How does it scale for updates? 

N =	
   2	
   4	
   6	
   8	
   10	
  

220k	
  

490k	
  

750k	
  

950k	
  

1.3M	
  
Partitioned Table 

Updates Per Second 
(3 columns)	
  

Number Of Servers	
  

85% < 1ms 
latency	
   # Clients = 2*N 

200	
  

400	
  

600	
  

800	
  

1000	
  



http://vmware.com/go/sqlfire 
Try SQLFire Today! 
Free for developer (3 nodes) perpetually.	
  

Download:	
  

Forum:	
   http://vmware.com/vmtn/appplatform/vfabric_sqlfire 
Got questions? Get answers.	
  

:sigh: 
Just Google it	
  

Twitter:	
   @vFabricSQLFire 

Q & A 


