
James Spooner, VP of Acceleration
QCon, Finance Track, 08 March 2012

Acceleration in the Wild, with

Data Flow Computing

Acceleration in the Wild with Data Flow

• Deliberate, focused approach to improving
application speed

– Involves adding Data Flow Engines (DFEs)

– Makes some of the program faster

– Will be programmed intentionally and be architecture
specific

– Will exploit as much available parallelism as possible

– May require transformations to expose parallelism

– May have multiple implementations

2

Maxeler is a acceleration specialist, delivering end-to-end performance for a range of clients in the
banking and oil/gas exploration industries.

Making efficient use of Silicon

- J. P, Eckert, Jr (Co-Inventor of ENIAC) Credit: Prof. Paul H.J. Kelly

Computing History…

“The parallel approach to computing does

require that some original thinking be done

about numerical analysis and data management

in order to secure efficient use.

In an environment which has represented the

absence of the need to think as the highest

virtue this is a decided disadvantage.”

 -Daniel Slotnick (Chief Architect of ILLIAC IV), 1967

Computing History…

Credit: Prof. Michael J. Flynn

• Eckert (and Amdahl) were right, Slotnik was wrong, until…
• Serial computing hit the wall(s) last decade:

– The memory wall; the increasing gap between processor and memory
speeds. This effect pushes cache sizes larger in order to mask the
latency of memory. This helps only to the extent that memory
bandwidth is not the bottleneck in performance.

– The ILP wall; the increasing difficulty of finding enough parallelism in a
single instruction stream to keep a high-performance single-core
processor busy.

– The power wall; the trend of consuming exponentially increasing
power with each factorial increase of operating frequency. This
increase can be mitigated by "shrinking" the processor by using
smaller traces for the same logic. The power wall poses
manufacturing, system design and deployment problems that have
not been justified in the face of the diminished gains in performance
due to the memory wall and ILP wall.

6

So what happened?

Source: Wikipedia fVCP DDloadavg 
2

http://en.wikipedia.org/wiki/Die_shrink

Using silicon efficiently - parallelism

Level of
Parallelism

Examples Costs

Coarse
Grained

- Multi-Node, Multi-chip, multi-core
- Process / thread level parallism

-Developing a distributed
Distributed system
- Locks, mutexes, queues, etc.

Fine
Grained

-Instruction level parallelism (ILP)
-Out-of-order execution, superscalar,
instruction pipelining, speculative
execution
-Data level parallelism
-SIMD / SSE

 - Lots of silicon
 - Compiler can do some work
upfront

Ultra Fine
Grained

-Data Flow architectures
- Massively parallel, lock free, hazard
free, streaming datapaths

- Resolve once

How is modern silicon used?

8

Intel 6-Core X5680 “Westmere”

How is modern silicon used?

Intel 6-Core X5680 “Westmere”

9

Computation

Support Logic for fine grained parallelism

What is Dataflow Computing?

10

Computing with control
flow processors

Computing with dataflow
engines (DFEs)

vs.

 MPC-X1000
• 8 vectis dataflow engines (DFEs)

• 192GB of DFE RAM

• Dynamic allocation of DFEs to
conventional CPU servers

– Zero-copy RDMA between
CPUs and DFEs over Infiniband

• Equivalent performance to
40-60 x86 servers

11

1U dataflow cloud providing
dynamically scalable compute
capability over Infiniband

Dataflow Programming

Application Components

13

SLiC

MaxelerOS

Memory

CPU

DataFlow

M
e
m

o
ry

PCI Express

Kernels

* +

+

Manager

Host application

Programming with MaxCompiler

14

C / C++ / Fortran MaxJ

SLiC

for (int i =0; i < DATA_SIZE; i++)
 y[i]= x[i] * x[i] + 30;

Main

Memory

CPU
CPU
Code

CPU Code (.c)

MaxCompiler Development Process

15

int *x, *y;

30 iii xxy

for (int i =0; i < DATA_SIZE; i++)
 y[i]= x[i] * x[i] + 30;

PCI

Express

Manager

Chip

Memory

Manager (.java)

x

x

+

30

x

Manager m = new Manager(“Calc”);
Kernel k =
 new MyKernel();

m.setKernel(k);
m.setIO(
 link(“x", PCIE),

m.addMode(modeDefault());
m.build();

 link(“y", PCIE));

#include “MaxSLiCInterface.h”
#include “Calc.max”

Calc(x, y, DATA_SIZE)

Main

Memory

CPU
CPU
Code

CPU Code (.c)

MaxCompiler Development Process

16

SLiC

MaxelerOS

HWVar x = io.input("x", hwInt(32));

HWVar result = x * x + 30;

io.output("y", result, hwInt(32));

MyKernel (.java)

int *x, *y;

y

x

x

+

30

y

x

PCI

Express

Manager

Chip

Memory

Manager (.java)

Manager m = new Manager();
Kernel k =
 new MyKernel();

m.setKernel(k);
m.setIO(
 link(“x", PCIE),

m.addMode(modeDefault());
m.build();

device = max_open_device(maxfile,
 "/dev/maxeler0");

Calc(x, DATA_SIZE)

Main

Memory

CPU
Host
Code

CPUCode (.c)

MaxCompiler Development Process

17

SLiC

MaxelerOS

HWVar x = io.input("x", hwInt(32));

HWVar result = x * x + 30;

io.output("y", result, hwInt(32));

MyKernel (.java)

#include “MaxSLiCInterface.h”
#include “Calc.max”
int *x, *y;

x

y

 link(“y", DRAM_LINEAR1D));

x

x

+

30

x

x

x

+

30

y

x

x

+

30

y

public class MyKernel extends Kernel {

 public MyKernel (KernelParameters parameters) {

 super(parameters);

 HWVar x = io.input("x", hwInt(32));

 HWVar result = x * x + 30;

 io.output("y", result, hwInt(32));

 }

}

18

The Full Kernel

x

x

+

30

y

Kernel Streaming: In Hardware

19

5 4 3 2 1 0

x

x

+

30

y

Kernel Streaming: In Hardware

20

5 4 3 2 1 0

0

x

x

+

30

y

Kernel Streaming: In Hardware

21

5 4 3 2 1 0

0

1

x

x

+

30

y

Kernel Streaming: In Hardware

22

30

1

2

5 4 3 2 1 0

x

x

+

30

y

Kernel Streaming: In Hardware

23

5 4 3 2 1 0

31

4

3

30

x

x

+

30

y

Kernel Streaming: In Hardware

24

5 4 3 2 1 0

34

9

4

30 31

x

x

+

30

y

Kernel Streaming: In Hardware

25

5 4 3 2 1 0

39

16

5

30 31 34

x

x

+

30

y

Kernel Streaming: In Hardware

26

5 4 3 2 1 0

46

25

30 31 34 39

x

x

+

30

y

Kernel Streaming: In Hardware

27

5 4 3 2 1 0

55

30 31 34 39 46

x

x

+

30

y

Kernel Streaming: In Hardware

28

5 4 3 2 1 0

30 31 34 39 46 55

Data flow graph as
generated by MaxCompiler
4866 nodes; about 250x100

How we approach Acceleration

• Messy code

• Complicated build
dependences

• Confused control-flow

• Impenetrable data
access

• Pointer-intensive data
structures

• Premature
optimization

31

What always makes Acceleration hard?

x
y
z

x
y
z
p

x
y
z

x
y
z

x
y
z

x
y
z

r
θ

x
y
z
q

x
y
z
p

x
y
z

for (i=0; i<N; ++i) {
 points[i]->incx();
}

• Some well-motivated
software structures
have real value, but
make acceleration
harder

• Examples:

– Virtual method calls
inside a loop

– Collections with non-
uniform type

– Substructure sharing

32

Conflicting Goals

x
y
z

x
y
z
p

x
y
z

x
y
z

x
y
z

x
y
z

r
θ

x
y
z
q

x
y
z
p

x
y
z

for (i=0; i<N; ++i) {
 points[i]->incx();
}

• Self-evident data
dependences

• Computing on large
collections of uniform data

• Appropriate representation
hiding

• Getting the abstraction right

33

What makes Acceleration easier?

x x x x x x x x

y y y y y y y y

z z z z z z z z

Maximum Performance Computing

• Identify parallelism and take advantage of it
– Fully understand data dependencies

• Minimize memory bandwidth
– Data reuse and representation

• Regularize the computation and data
– Minimize control flow complexity

• Find optimal balance for underlying architecture
– Memory hierarchy bandwidth(s) and size(s) and latency(s)

– Communication bandwidth(s) and latency(s)

– Math performance

– Branch cost (control divergence)

– Axes of Parallelism

34

• Run the code with
profiling tools

• Understand data and
loop structures and data
access patterns

• Investigate
transformation options
for these structures and
access patterns

• Decide which parts of the
code need acceleration

• Implement and validate

 35

Maxeler Acceleration Process

Analysis

Code

Transformation

Partitioning

Implementation

Result

Sets theoretical
performance bounds

Achieve performance

Application Analysis

36

Partitioning Options

37

Data Access Plans Code Partitioning

Tr
an

sf
o

rm
at

io
n

s

Pareto Optimal Options

Runtime

D
ev

el
o

p
m

en
t

Ti
m

e

Try to minimise runtime and
development time, while
maximising flexibility and precision.

Credit Derivatives Valuation & Risk

• Compute value of
complex financial
derivatives (CDOs)

• Typically run overnight,
but beneficial to
compute in real-time

• Many independent jobs

• Speedup: 220-270x

• Power consumption per
node drops from 250W
to 235W/node

38

Discovering the Dataflow of an

Application

• Developed in-house to make deciphering complex
code easier

• MaxSpot is a tool to profile, analyse, and visualise
the dynamic behaviour of applications

• Extensible analysis framework

• Determines control-flow and data-flow

• Build loop graphs

• Runs on application binaries
– Independent of original programming languages(s)

– Execute MaxSpot with one (or more) test data-sets and
observe code paths

40

MaxSpot

Control Flow: Matrix Multiply

41

void mm5(A,B,C)

 FLOATTYPE A[SZ][SZ], B[SZ][SZ], C[SZ][SZ];

{

 int i, j, k;

 FLOATTYPE r;

 for (k = 0; k < SZ; k++){

 for (i = 0; i < SZ; i++){

 for (j = 0; j < SZ; j++){

 C[i][j] += A[i][k] * B[k][j];

 }

 }

 }

}

Data Flow: Matrix Multiply

42

Performance and Profiling of

Accelerated Systems

• Top measures % of time CPU is running

• Maxtop monitors % of time the DFE is running

44

Measuring Utilization

MaxTop Tool 2011.2

Found 2 Maxeler card(s) running MaxelerOS 2011.2

Card 0: MAX3A (P/N: 13424) S/N: 219270088 Mem: 24GB DFE(s): 1 /dev/maxeler0

Card 1: MAX3A (P/N: 13424) S/N: 000025559 Mem: 24GB DFE(s): 1 /dev/maxeler1

DEVICE %DFE TEMP BITSTREAM PID USER TIME COMMAND

maxeler0 66.6% 57.1C 9d9de1... 12333 jspooner 00:00:39 model

maxeler1 0.0% 54.6C 9d9de1... - - - -

• CPU and DFE can (and should!) process in parallel

– Runtime always limited by longest running part

45

Overlapping CPU + DFE

CPU

DFE

Sequential Run-time

CPU

DFE

Overlapped Run-time

Performance Profiling

46

Maxeler University Program Members

47

• The challenge is to make the best use of Silicon we
can

• Frequency Scaling is over, it’s time to start thinking in
parallel

• Heterogeneous system design allows us to tailor
systems to the applications

• Ultra-fine-grained parallelism in Dataflow computing
benefits throughput and latency

48

Conclusions

