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Acceleration in the Wild, with 

Data Flow Computing 



Acceleration in the Wild with Data Flow 

• Deliberate, focused approach to improving 
application speed 

– Involves adding Data Flow Engines (DFEs) 

– Makes some of the program faster 

– Will be programmed intentionally and be architecture 
specific  

– Will exploit as much available parallelism as possible 

– May require transformations to expose parallelism 

– May have multiple implementations 
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Maxeler is a acceleration specialist, delivering end-to-end performance for a range of clients in the 
banking and oil/gas exploration industries.   



Making efficient use of Silicon 



- J. P, Eckert, Jr (Co-Inventor of ENIAC) Credit: Prof. Paul H.J. Kelly 

Computing History… 



“The parallel approach to computing does  

require that some original thinking be done  

about numerical analysis and data management  

in order to secure efficient use. 

In an environment which has represented the  

absence of the need to think as the highest  

virtue this is a decided disadvantage.”  

 

   -Daniel Slotnick (Chief Architect of ILLIAC IV), 1967  

Computing History… 

Credit: Prof. Michael J. Flynn 



• Eckert (and Amdahl) were right, Slotnik was wrong, until… 
• Serial computing hit the wall(s) last decade: 

– The memory wall; the increasing gap between processor and memory 
speeds. This effect pushes cache sizes larger in order to mask the 
latency of memory. This helps only to the extent that memory 
bandwidth is not the bottleneck in performance. 

– The ILP wall; the increasing difficulty of finding enough parallelism in a 
single instruction stream to keep a high-performance single-core 
processor busy. 

– The power wall; the trend of consuming exponentially increasing 
power with each factorial increase of operating frequency. This 
increase can be mitigated by "shrinking" the processor by using 
smaller traces for the same logic. The power wall poses 
manufacturing, system design and deployment problems that have 
not been justified in the face of the diminished gains in performance 
due to the memory wall and ILP wall. 
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So what happened? 

Source: Wikipedia fVCP DDloadavg 
2

http://en.wikipedia.org/wiki/Die_shrink


Using silicon efficiently - parallelism 

Level of 
Parallelism 

Examples Costs 

Coarse 
Grained 

- Multi-Node, Multi-chip, multi-core 
- Process / thread level parallism 

-Developing a distributed 
Distributed system 
- Locks, mutexes, queues, etc. 

Fine 
Grained 

-Instruction level parallelism (ILP) 
-Out-of-order execution, superscalar, 
instruction pipelining, speculative 
execution 
-Data level parallelism 
-SIMD / SSE 

 - Lots of silicon 
 - Compiler can do some work 
upfront 
 

Ultra Fine 
Grained 

-Data Flow architectures 
- Massively parallel, lock free, hazard 
free, streaming datapaths 

- Resolve  once 



How is modern silicon used? 
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Intel 6-Core X5680 “Westmere” 

 



How is modern silicon used? 

Intel 6-Core X5680 “Westmere” 
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Computation 

Support Logic for fine grained parallelism 



What is Dataflow Computing? 
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Computing with control 
flow processors 

Computing with dataflow 
engines (DFEs) 

vs. 



      MPC-X1000 
• 8 vectis dataflow engines (DFEs) 

• 192GB of DFE RAM 

• Dynamic allocation of DFEs to 
conventional CPU servers 

– Zero-copy RDMA between  
CPUs and DFEs over Infiniband 

• Equivalent performance to  
40-60 x86 servers  
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1U dataflow cloud providing 
dynamically scalable compute 
capability over Infiniband 



Dataflow Programming 



Application Components 
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Programming with MaxCompiler 
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C / C++ / Fortran MaxJ 

SLiC 



 
 
 
for (int i =0; i < DATA_SIZE; i++) 
    y[i]= x[i] * x[i] + 30; 

Main 

Memory 

CPU 
CPU 
Code  

CPU Code (.c) 

MaxCompiler Development Process 
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int *x, *y; 

30 iii xxy



 
 
 
for (int i =0; i < DATA_SIZE; i++) 
    y[i]= x[i] * x[i] + 30; 

PCI 

 

 

Express 

Manager 

Chip 

Memory 

Manager (.java) 

x

x

+

30

x

Manager m = new Manager(“Calc”); 
Kernel k =  
     new MyKernel(); 
 
m.setKernel(k); 
m.setIO( 
    link(“x", PCIE), 
 
m.addMode(modeDefault()); 
m.build(); 

 
 
 
 
 
 
 
    link(“y", PCIE)); 

#include “MaxSLiCInterface.h” 
#include “Calc.max” 
 
 
 
Calc(x, y, DATA_SIZE) 

Main 

Memory 

CPU 
CPU 
Code  

CPU Code (.c) 

MaxCompiler Development Process 
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SLiC 

MaxelerOS 

HWVar x = io.input("x", hwInt(32)); 
 
HWVar result = x * x + 30; 
 
io.output("y", result, hwInt(32)); 

MyKernel (.java) 

 
 
int *x, *y; 

y 

x 

x 

+ 

30 

y 

x 



PCI 

 

 

Express 

Manager 

Chip 

Memory 

Manager (.java) 

Manager m = new Manager(); 
Kernel k =  
     new MyKernel(); 
 
m.setKernel(k); 
m.setIO( 
    link(“x", PCIE), 
 
m.addMode(modeDefault()); 
m.build(); 

 
 
 
 
 
 
 

device = max_open_device(maxfile, 
    "/dev/maxeler0"); 
 
 
 
Calc(x, DATA_SIZE) 

 
 
 

Main 

Memory 

CPU 
Host 
Code  

CPUCode (.c) 

MaxCompiler Development Process 
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SLiC 

MaxelerOS 

HWVar x = io.input("x", hwInt(32)); 
 
HWVar result = x * x + 30; 
 
io.output("y", result, hwInt(32)); 

MyKernel (.java) 

#include “MaxSLiCInterface.h” 
#include “Calc.max” 
int *x, *y; 

 
 
 
 
 
 
 

x 

y 

 link(“y", DRAM_LINEAR1D)); 

x

x

+

30

x

x 

x 

+ 

30 

y 



x 

x 

+ 

30 

y 

public class MyKernel extends Kernel { 

 

 public MyKernel (KernelParameters parameters) { 

  super(parameters); 

 

  HWVar x = io.input("x", hwInt(32)); 

 

  HWVar result = x * x + 30; 

 

  io.output("y", result, hwInt(32)); 

 } 

} 
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The Full Kernel 
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Kernel Streaming: In Hardware 
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Kernel Streaming: In Hardware 
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Kernel Streaming: In Hardware 
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Kernel Streaming: In Hardware 
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Kernel Streaming: In Hardware 

25 

5    4    3    2    1    0 

39 

16 

5 

30  31  34 



x 

x 

+ 

30 

y 

Kernel Streaming: In Hardware 

26 

5    4    3    2    1    0 

46 

25 

30  31  34  39 



x 

x 

+ 

30 

y 

Kernel Streaming: In Hardware 
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Data flow graph as  
generated by MaxCompiler  
4866 nodes; about 250x100 



How we approach Acceleration 



• Messy code 

• Complicated build 
dependences 

• Confused control-flow 

• Impenetrable data 
access 

• Pointer-intensive data 
structures 

• Premature 
optimization 
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What always makes Acceleration hard? 
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for (i=0; i<N; ++i) { 
  points[i]->incx(); 
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• Some well-motivated 
software structures 
have real value, but 
make acceleration 
harder 

• Examples: 

– Virtual method calls 
inside a loop 

– Collections with non-
uniform type 

– Substructure sharing 
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Conflicting Goals 

x 
y 
z 

x 
y 
z 
p 

x 
y 
z 

x 
y 
z 

x 
y 
z 

x 
y 
z 

r 
θ 

x 
y 
z 
q 

x 
y 
z 
p 

x 
y 
z 

for (i=0; i<N; ++i) { 
  points[i]->incx(); 
} 
 



• Self-evident data 
dependences 

• Computing on large 
collections of uniform data 

• Appropriate representation 
hiding 

• Getting the abstraction right 
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What makes Acceleration easier? 

x x x x x x x x 

y y y y y y y y 

z z z z z z z z 



Maximum Performance Computing 

• Identify parallelism and take advantage of it 
– Fully understand data dependencies 

• Minimize memory bandwidth 
– Data reuse and representation 

• Regularize the computation and data 
– Minimize control flow complexity 

• Find optimal balance for underlying architecture 
– Memory hierarchy bandwidth(s) and size(s) and latency(s) 

– Communication bandwidth(s) and latency(s) 

– Math performance 

– Branch cost (control divergence) 

– Axes of Parallelism   
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• Run the code with 
profiling tools 

• Understand data and 
loop structures and data 
access patterns 

• Investigate 
transformation options 
for these structures and 
access patterns 

• Decide which parts of the 
code need acceleration 

• Implement and validate 
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Maxeler Acceleration Process 

Analysis 

Code 

Transformation 

Partitioning 

Implementation 

Result 

Sets theoretical 
performance bounds 

Achieve performance 



Application Analysis 
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Partitioning Options 
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Data Access Plans Code Partitioning 
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Pareto Optimal Options 

Runtime 
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Try to minimise runtime and 
development time, while 
maximising flexibility and precision. 



Credit Derivatives Valuation & Risk 

• Compute value of 
complex financial 
derivatives (CDOs) 

• Typically run overnight, 
but beneficial to 
compute in real-time 

• Many independent jobs 

• Speedup: 220-270x 

• Power consumption per 
node drops from 250W 
to 235W/node 
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Discovering the Dataflow of an 

Application 



• Developed in-house to make deciphering complex 
code easier 

• MaxSpot is a tool to profile, analyse, and visualise  
the dynamic behaviour of applications 

• Extensible analysis framework 

• Determines control-flow and data-flow 

• Build loop graphs 

• Runs on application binaries 
– Independent of original programming languages(s) 

– Execute MaxSpot with one (or more) test data-sets and 
observe code paths 
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MaxSpot 



Control Flow: Matrix Multiply 
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void mm5(A,B,C) 

     FLOATTYPE A[SZ][SZ], B[SZ][SZ], C[SZ][SZ]; 

{ 

  int i, j, k; 

  FLOATTYPE r; 

 

  for (k = 0; k < SZ; k++){ 

    for (i = 0; i < SZ; i++){ 

      for (j = 0; j < SZ; j++){ 

        C[i][j] += A[i][k] * B[k][j]; 

      } 

    } 

  } 

} 



Data Flow: Matrix Multiply 
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Performance and Profiling of 

Accelerated Systems 



• Top measures % of time CPU is running 

• Maxtop monitors % of time the DFE is running 
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Measuring Utilization 

MaxTop Tool 2011.2 

Found 2 Maxeler card(s) running MaxelerOS 2011.2 

Card 0: MAX3A (P/N: 13424) S/N: 219270088 Mem: 24GB DFE(s): 1 /dev/maxeler0 

Card 1: MAX3A (P/N: 13424) S/N: 000025559 Mem: 24GB DFE(s): 1 /dev/maxeler1 

 

DEVICE     %DFE    TEMP   BITSTREAM      PID    USER       TIME      COMMAND 

maxeler0   66.6%   57.1C  9d9de1...      12333  jspooner   00:00:39  model 

maxeler1   0.0%    54.6C  9d9de1...      -      -          -         - 

 



• CPU and DFE can (and should!) process in parallel 

– Runtime always limited by longest running part 
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Overlapping CPU + DFE 

CPU 

DFE 

Sequential Run-time 

CPU 

DFE 

Overlapped Run-time 



Performance Profiling 
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Maxeler University Program Members 
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• The challenge is to make the best use of Silicon we 
can 

• Frequency Scaling is over, it’s time to start thinking in 
parallel 

• Heterogeneous system design allows us to tailor 
systems to the applications 

• Ultra-fine-grained parallelism in Dataflow computing 
benefits throughput and latency 
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Conclusions 


