

GAMES FOR THE MASSES

How DevOps Affects Architecture

Our games all look the same

Flash client

Backend

Our games all look the same

Flash client

Game Session

Asynch. Communication

Our games all look the same

Backend

State Changes
Validation
Persistence

14 billion requests / month

14 billion requests / month

14 billion requests / month

>100,000 DB operations / second

14 billion requests / month

>100,000 DB operations / second

>50,000 DB updates / second

2 Developers to do it all

Typical team setup

- 4 product managers
- 4 artists
- 4 frontend engineers
- 2 backend engineers
 - design, implementation, operation

Wooga has dedicated game teams

Wednesday, March 7, 2012

Wednesday, March 7, 2012

Wednesday, March 7, 2012

Wednesday, March 7, 2012

Wednesday, March 7, 2012

Architecture Evolution at Wooga

The Start

The Next Step

Best of Two Worlds

Company Values

Oct 2009: 1st team wanted good code quality

Good code quality

Easy to understand

Easy to test

Easy to refactor

Oct 2009: 1st team wanted good code quality

Good code quality

Easy to understand

Easy to test

Easy to refactor

Evolution I: Use Ruby (on Rails)

A basic setup using sharding worked fine

250K daily users

250K daily users

Heavy optimizations were necessary

Heavy optimizations were necessary

Numerous small fixes regarding DB config

Heavy optimizations were necessary

Numerous small fixes regarding DB config More shards

Heavy optimizations were necessary

Numerous small fixes regarding DB config

More shards

Even more shards

Heavy optimizations were necessary

Numerous small fixes regarding DB config

More shards

Even more shards

Splitting the model to get more shards

Early sharding hell: 8 master and 8 slaves

At 500K daily users we were at a dead end

Jan 2010: Meanwhile at the 2nd team

Don't break the bank

Make it faster Make it cheaper Make it simpler

Jan 2010: Meanwhile at the 2nd team

Don't break the bank

Make it faster

Make it cheaper

Make it simpler

Evolution II: Use Redis as main database

If MySQL is a truck

Fast enough

disk based

robust

If MySQL is a truck, Redis is a race car

Super fast

RAM based

fragile

Bare metal for low latency!

How could we apply that knowledge?


```
def self.find(uid)
  if not_migrated?(uid)
    OldSQL.all(:conditions => {:uid=>uid}).each do |old|
      NewRedis.create_from_old!(old)
    end
  end
  # Load from Redis...
  # Create objects...
end
def not_migrated?(uid)
  redis.hsetnx('migrated_ids', uid)
end
```

```
def self.find(uid)
  if not_migrated?(uid)
    OldSQL.all(:conditions => {:uid=>uid}).each do lold!
    NewRedis.create_from_old!(old)
    end
end
# Load from Redis...
# Create objects...
end
```

```
def not_migrated?(uid)
  redis.hsetnx('migrated_ids', uid)
end
```

```
def self.find(uid)
  if not_migrated?(uid)
    OldSQL.all(:conditions => {:uid=>uid}).each do |old|
      NewRedis.create_from_old!(old)
    end
  end
  # Load from Redis...
  # Create objects...
end
def not_migrated?(uid)
  redis.hsetnx('migrated_ids', uid)
end
```

```
def self.find(uid)
  if not_migrated?(uid)
    OldSQL.all(:conditions => {:uid=>uid}).each do |old|
      NewRedis.create_from_old!(old)
    end
  end
  # Load from Redis...
  # Create objects...
end
def not_migrated?(uid)
  redis.hsetnx('migrated_ids', uid)
```

end

```
def self.find(uid)
  if not_migrated?(uid)
    OldSQL.all(:conditions => {:uid=>uid}).each do |old|
      NewRedis.create_from_old!(old)
    end
  end
  # Load from Redis...
  # Create objects...
end
def not_migrated?(uid)
  redis.hsetnx('migrated_ids', uid)
end
```

```
def self.find(uid)
  if not_migrated?(uid)
    OldSQL.all(:conditions => {:uid=>uid}).each do |old|
      NewRedis.create_from_old!(old)
    end
  end
  # Load from Redis...
  # Create objects...
end
def not_migrated?(uid)
  redis.hsetnx('migrated_ids', uid)
end
```

```
def self.find(uid)
  if not_migrated?(uid)
    OldSQL.all(:conditions => {:uid=>uid}).each do |old|
      NewRedis.create_from_old!(old)
    end
  end
  # Load from Redis...
  # Create objects...
end
def not_migrated?(uid)
  redis.hsetnx('migrated_ids', uid)
end
```

Typical migration throughput over 3 days

Big and static data in MySQL, rest goes to Redis

256 GB data 10% writes 60 GB data 50% writes

One team saved the other one

One team saved the other one

We now have more than 2 million users / day

We now have more than 2 million users / day

10 single-points-of-failure - no fun at all!

Architecture Evolution at Wooga

The Start: Ruby

The Next Step

Best of Two Worlds

Company Values

Oct 2010: 3rd team used a stateful server

If DBs are the problem

Don't use them

Store state in server

Need to be robust

Oct 2010: 3rd team used a stateful server

If DBs are the problem

Don't use them Store state in server Need to be robust

Evolution III: Use Erlang for a stateful server

Stateful servers are not as hard as you think

Stateful servers are not as hard as you think

Stateful servers are not as hard as you think

With stateful server the DB is less used

With stateful server the DB is less used

Deploying with a stateful server

In order to bring up a new version

Deploying with a stateful server

In order to bring up a new version

Just deploy it

Hot code replacement is great!

There are even more advantages

Faster than Ruby (5,000 rps / node)

- CPU bound

There are even more advantages

Faster than Ruby (5,000 rps / node)

- CPU bound

Very few SPOFs

- ... and those are easy to recover

There are even more advantages

Faster than Ruby (5,000 rps / node)

- CPU bound

Very few SPOFs

- ... and those are easy to recover

Transactional logic

- Invariants instead of explicit error handling

Central handling of effects

Central handling of effects

Transactional behavior

Erlang code is not that hard to read, isn't it?

Architecture Evolution at Wooga

The Start: Ruby

The Next Step: Erlang

Best of Two Worlds

Company Values

Erlang is great

Concurrency, robustness

Great for operation

Erlang is great

Concurrency, robustness Great for operation

Ruby is great

Concise, expressive, testable Great for development

Erlang is great

Concurrency, robustness Great for operation

Ruby is great

Concise, expressive, testable Great for development

Erlang is great

Concurrency, robustness Great for operation

Ruby is great

Concise, expressive, testable Great for development

Evolution IV: The best out of two worlds

The basic setup looks exactly like before

Example controller in Ruby

Example controller in Ruby

DSL-like definition of game action

DSL-like definition of game action Skinny as controllers should be

```
class FruitTree < Tree</pre>
  property :last_shake_time, :type => Integer, :default => 0
  property :collectable_fruit_count, :type => Integer, :default => 0
  def shake
    raise G8::Error::Validation, "no fruit!" unless carries_fruit?
    session.user.xp += 1
    session.user.energy -= 1
    self.last_shake_time = game_time
    self.collectable_fruit_count = config.fruit_count
  end
end
```

```
class FruitTree < Tree</pre>
```

```
property :last_shake_time, :type => Integer, :default => 0
property :collectable_fruit_count, :type => Integer, :default => 0

def shake
   raise G8::Error::Validation, "no fruit!" unless carries_fruit?

session.user.xp += 1
session.user.energy -= 1
self.last_shake_time = game_time
self.collectable_fruit_count = config.fruit_count
end
```

end

```
class FruitTree < Tree</pre>
```

```
property :last_shake_time, :type => Integer, :default => 0
property :collectable_fruit_count, :type => Integer, :default => 0

def shake
  raise G8::Error::Validation, "no fruit!" unless carries_fruit?

session.user.xp += 1
session.user.energy -= 1
self.last_shake_time = game_time
self.collectable_fruit_count = config.fruit_count
end
```

end

```
class FruitTree < Tree

property :last_shake_time, :type => Integer, :default => 0
property :collectable_fruit_count, :type => Integer, :default => 0

def shake
    raise G8::Error::Validation, "no fruit!" unless carries_fruit?

session.user.xp += 1
session.user.energy -= 1
self.last_shake_time = game_time
self.collectable_fruit_count = config.fruit_count
end
```

end

```
class FruitTree < Tree</pre>
  property :last_shake_time, :type => Integer, :default => 0
  property :collectable_fruit_count, :type => Integer, :default => 0
  def shake
    raise G8::Error::Validation, "no fruit!" unless carries_fruit?
    session.user.xp += 1
    session.user.energy -= 1
    self.last_shake_time = game_time
    self.collectable_fruit_count = config.fruit_count
  end
```

end

Easily unit testable

```
class FruitTree < Tree</pre>
 property :last_shake_time, :type => Integer, :default => 0
 property :collectable_fruit_count, :type => Integer, :default => 0
 def shake
    raise G8::Error::Validation, "no fruit!" unless carries_fruit?
   session.user.xp += 1
   session.user.energy -= 1
    self.last_shake_time = game_time
    self.collectable_fruit_count = config.fruit_count
 end
```

end

Easily unit testable

Minimal amount of code

Game state

Game state is split in multiple parts

user, map, fruit_trees etc.

Game state

Game state is split in multiple parts user, map, fruit_trees etc.

Erlang does not care about content Serialized Ruby objects

Game state

Game state is split in multiple parts user, map, fruit_trees etc.

Erlang does not care about content Serialized Ruby objects

Erlang does know mapping of state parts to URLs

Mapping provided by Ruby on startup

Mapping of state parts to game actions

Mapping of state parts to game actions

Worker knows mapping

Mapping of state parts to game actions

Worker knows mapping

Worker pushes mapping to Erlang on startup

Mapping of state parts to game actions

Worker knows mapping

Worker pushes mapping to Erlang on startup

Erlang can query mapping if needed

Architecture Evolution at Wooga

The Start: Ruby

The Next Step: Erlang

Best of Two Worlds

Company Values

Each new game brought us innovation

Aug 2011

Small teams over big teams

Collaboration over competition

Generalists over specialists

Effort reduction over cost reduction

Innovation

over risk mitigation

A good value system

We've learned to value

Small teams over Big teams

Collaboration over Competition

Generalists over Specialists

Effort reduction over Cost reduction

Innovation over Risk mitigation

It works!

It works!

Be fast, be bold!

