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Our games all look the same

Flash client Backend
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Our games all look the same

Flash client

Game Session

Asynch. Communication
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Our games all look the same

Backend

State Changes
Validation

Persistence
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But the scale is interesting

14 billion requests / month
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But the scale is interesting

14 billion requests / month

>100,000 DB operations / second
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But the scale is interesting

14 billion requests / month

>100,000 DB operations / second

>50,000 DB updates / second
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2 Developers to do it all

Typical team setup

4 product managers
4 artists
4 frontend engineers

2 backend engineers

- design, implementation, operation

-

Wednesday, March 7, 2012




Wooga has dedicated game teams
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Architecture Evolution at Wooga

The Start

The Next Step

Best of Two Worlds

Company Values




Oct 2009: 1st team wanted good code quality

Good code quality

Easy to understand
Easy to test

Easy to refactor

o\ > 4
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Oct 2009: 1st team wanted good code quality

Good code quality

Easy to understand
Easy to test

Easy to refactor

o\ F5S
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Evolution I: Use Ruby (on Rails)
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A basic setup using sharding worked fine

My My
SQL SQL
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250K daily users

2,000,000

1,500,000

1,000,000

500,000
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Life was good
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Life was good NO MORE




Welcome to 6 weeks of pain!

Heavy optimizations were necessary

o\ P> 4
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Welcome to 6 weeks of pain!

Heavy optimizations were necessary

Numerous small fixes regarding DB config
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Welcome to 6 weeks of pain!

Heavy optimizations were necessary

Numerous small fixes regarding DB config
More shards

Even more shards

-
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Welcome to 6 weeks of pain!

Heavy optimizations were necessary
Numerous small fixes regarding DB config
More shards
Even more shards

Splitting the model to get more shards
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At 500K daily users we were at a dead end
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http://www.flickr.com/photos/billue_the bear/

Wednesday, March 7, 2012



http://www.flickr.com/photos/billue_the_bear/
http://www.flickr.com/photos/billue_the_bear/

Jan 2010: Meanwhile at the 2nd team

Don’t break the bank

Make it faster
Make it cheaper

Make it simpler

o\ F5S
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Jan 2010: Meanwhile at the 2nd team

Don’t break the bank

Make it faster
Make it cheaper

Make it simpler

o\ > 4
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Evolution Il: Use Redis as main database

Wednesday, March 7, 2012



If MySQL is a truck

Fast enough disk based robust
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If MySQL is a truck, Redis is a race car

Super fast RAM based fragile
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Bare metal for low latency!
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How could we apply that knowledge?

2,000,000

1,500,000

1,000,000

500,000

0
Apr-10 Jul-10 Oct-10 Jan-11 Apr-11 Jul-11 Oct-11

e

Wednesday, March 7, 212




On-demand migrations from MySQL to Redis

def self.find(uid)

if not_migrated?(uid)
01dSQL.all(:conditions => {:uid=>uid}).each do loldl|
NewRedis.create_from_old!(old)
end
end

# Load from Redis...
# Create objects...
end

def not_migrated?(uid)
redis.hsetnx('migrated_ids', uid)
end
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On-demand migrations from MySQL to Redis

def self.find(uid)

if not_migrated?(uid)
01dSQL.all(:conditions => {:uid=>uid}).each do loldl|
NewRedis.create_from_old!(old)
end
end

# Load from Redis...
# Create objects...
end

def not_migrated?(uid)
redis.hsetnx('migrated_ids', uid)
end
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Typical migration throughput over 3 days

calls per minute




Big and static data in MySQL, rest goes to Redis

256 GB data 60 GB data

10% writes 50% writes
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One team saved the other one
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We now have more than 2 million users / day
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We now have more than 2 million users / day
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10 single-points-of-failure - no fun at all!

My My My My My
SQL SQL SQL SQL SQL
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http://www.flickf.com/photos/wolfsavard/
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Architecture Evolution at Wooga

The Start: Ruby

The Next Step
Best of Two Worlds

Company Values

o\ F5S
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Stateless servers and DBs

Server Database
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Stateless servers and DBs

Server Database
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Stateful servers and DBs

Server Database
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Stateful servers and DBs

Server Database
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Stateful servers and DBs

Server Database

Wednesday, March 7, 2012



Stateful servers and DBs

Server Database

One Game Session
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Stateful servers and DBs

Server Database

One Game Session
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Oct 2010: 3rd team used a stateful server

If DBs are the problem
Don’t use them

Store state in server
Need to be robust




Oct 2010: 3rd team used a stateful server

If DBs are the problem A,

Don’t use them
Store state in server

Need to be robust ERLANG

o\ F5S
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Evolution lll: Use Erlang for a stateful server

Wednesday, March 7, 2012



Stateful servers are not as hard as you think
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Stateful servers are not as hard as you think

ﬂ/ﬁ
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Stateful servers are not as hard as you think

Server

ﬂ/ﬁ
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Stateful servers are not as hard as you think

Server
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Server
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Stateful servers are not as hard as you think

Server

ﬂ/ﬁ
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Stateful servers are not as hard as you think

Server Server Server
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With stateful server the DB is less used

B Ruby Stateless | Erlang Stateful

30,000

22,500

15,000

7,500

database operations / sec

Wednesday, March 7, 2012



With stateful server the DB is less used

B Ruby Stateless | Erlang Stateful
30,000
22,500
15,000
700
7,500 M
, :

database operations / sec
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Deploying with a stateful server

In order to bring up a new version

WA\ P> 4
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Deploying with a stateful server

In order to bring up a new version

Just deploy it

Hot code replacement is great!
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There are even more advantages

Faster than Ruby (5,000 rps / node)
- CPU bound

WA\ P> 4
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There are even more advantages

Faster than Ruby (5,000 rps / node)
- CPU bound

Very few SPOFs

- ... and those are easy to recover
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There are even more advantages

Faster than Ruby (5,000 rps / node)
- CPU bound

Very few SPOFs

- ... and those are easy to recover

Transactional logic

- Invariants instead of explicit error handling

A\
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Example “controller” in Erlang

% Harvest or clear a seed. Check food capacity.
handle(?PLOTS, ActionA, Coords, Args, Game)

when ActionA =:= harvest_seed;
ActionA =:= clear_ seed ->
{Effects, NewMap} = k_map:handle(?PLOTS, ActionA, Coords, Args,

map(Game)),

{updated_game([fun (_G) -> {map, NewMap} end,
fun (G) -> {user, k_user:refill(Cuser(G))} end,
fun (G) -> {user, k_user:update(Effects, user(G))} end,
fun (G) -> check_food_cap(G) end],
Game),

done};
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Example “controller” in Erlang

% Harvest or clear a seed. Check food capacity.
handle(?PLOTS, ActionA, Coords, Args, Game)

when ActionA =:= harvest_seed;
ActionA =:= clear_seed ->
{Effects, NewMap} = k_map:handle(?PLOTS, ActionA, Coords, Args,

map(Game)),

{updated_game([fun (_G) -> {map, NewMap} end,
fun (G) -> {user, k_user:refill(Cuser(G))} end,
fun (G) -> {user, k_user:update(Effects, user(G))} end,
fun (G) -> check_food_cap(G) end],
Game),

done};

Central handling of effects

Transactional behavior
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Example model in Erlang

harvest(#seed{id = Id} = Seed, BoostPercentage) ->
verify_seed_ready(Seed),
verify_not_withered(Seed),

ContractReward = k_seed_config:reward(Id),
Reward = k _utils:ceil(ContractReward * (1 + BoostPercentage / 100)),

UserEffects = [?GAIN_FOOD(Reward),

?ADD_XP(k_seed_config:xp_reward(Id))],
{UserEffects, undefined}.
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Example model in Erlang

harvest(#seed{id = Id} = Seed, BoostPercentage) ->
verify_seed_ready(Seed),
verify_not_withered(Seed),

ContractReward = k_seed_config:reward(Id),
Reward = k_utils:ceil(ContractReward * (1 + BoostPercentage / 100)),

UserEffects = [?GAIN_FOOD(Reward),

?ADD_XP(k_seed_config:xp_reward(Id))],
{UserEffects, undefined}.

Erlang code is not that hard to read, isn’t it?

Wednesday, March 7, 2012



Wednesday, March 7, 2012


http://www.flickr.com/photos/hotreactor/
http://www.flickr.com/photos/hotreactor/

Architecture Evolution at Wooga

The Start: Ruby

The Next Step: Erlang

Best of Two Worlds

Company Values

o\ F5S
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Aug 2011: 4th team wanted both

Erlang is great

Concurrency, robustness

Great for operation




Aug 2011: 4th team wanted both

Erlang is great

Concurrency, robustness
Great for operation

Ruby is great

Concise, expressive, testable
Great for development

A\
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Aug 2011: 4th team wanted both

Erlang is great A,

Concurrency, robustness
Great for operation

ERLANG
Ruby is great

Concise, expressive, testable

Great for development

.-
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Aug 2011: 4th team wanted both

Erlang is great A,

Concurrency, robustness
Great for operation

ERLANG
Ruby is great

Concise, expressive, testable
Great for development

.-
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Evolution IV: The best out of two worlds
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The basic setup looks exactly like before

Server




Example controller in Ruby

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]
fruit_trees[x, y].shake
end
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Example controller in Ruby

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]

fruit_trees[x, y].shake
end

DSL-like definition of game action
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Example controller in Ruby

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]
fruit_trees[x, y].shake
end

DSL-like definition of game action

Skinny as controllers should be

Wednesday, March 7, 2012



Example model in Ruby

class FruitTree < Tree

property :last_shake_time, :type => Integer, :default => 0
property :collectable_fruit_count, :type => Integer, :default => 0

def shake
raise G8::Error::Validation, "no fruit!" unless carries_fruit?

session.user.xp += 1

session.user.energy -= 1

self.last_shake_time = game_time

self.collectable_fruit_count = config.fruit_count
end

end
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self.last_shake_time = game_time
self.collectable_fruit_count = config.fruit_count

end

end
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Example model in Ruby

class FruitTree < Tree

property :last_shake_time, :type => Integer, :default => 0
property :collectable_fruit_count, :type => Integer, :default => 0

def shake
raise G8::Error::Validation, "no fruit!" unless carries_fruit?

session.user.xp += 1

session.user.energy -= 1

self.last_shake_time = game_time

self.collectable_fruit_count = config.fruit_count
end

end

Easily unit testable

Minimal amount of code
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Bringing 2 worlds together

Server




Bringing 2 worlds together
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Bringing 2 worlds together




Game state

Game state is split in multiple parts

user, map, fruit_trees etc.

o\ > 4
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Game state

Game state is split in multiple parts

user, map, fruit_trees etc.

Erlang does not care about content
Serialized Ruby objects

A\

Wednesday, March 7, 2012




Game state

Game state is split in multiple parts

user, map, fruit_trees etc.

Erlang does not care about content
Serialized Ruby objects

Erlang does know mapping of state parts to URLs
Mapping provided by Ruby on startup
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Looking back at the game action

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]
fruit_trees[x, y].shake
end
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Looking back at the game action

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Y = params[:x], params[:y]

fruit_trees[x, y].shake
end

Mapping of state parts to game actions

Worker knows mapping
Worker pushes mapping to Erlang on startup
Erlang can query mapping if needed
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http://www.flickr.com/photos/aigle_dore/
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Architecture Evolution at Wooga

The Start: Ruby

The Next Step: Erlang
Best of Two Worlds

Company Values

o\ F5S
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Each new game brought us innovation
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We’ve learned to value

Small teams

over
big teams




We’ve learned to value

Collaboration

over
competition




We’ve learned to value

Generalists

over
specialists




We’ve learned to value

Effort reduction

over
cost reduction




We’ve learned to value

Innovation

over
risk mitigation




A good value system

We’ve learned to value

Small teams
Collaboration
Generalists
Effort reduction

Innovation

over

over

over

over

over

Big teams
Competition
Specialists
Cost reduction

Risk mitigation
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1€ works!
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1€ works!

Be fast, be bold!




Questions?

Jesper Richter-Reichhelm
@jrirei ™

slideshare.net/wooga
wooga.com/jobs

.MJ....N
i~=

world of gaming
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