LA
w world of gaming g

GAMES FOR THE MASSES

How DevOps Affects Architecture

Jesper Richter-Reichhelm, @jrirei

Wednesday, March 7, 2012

faCQbOOk g . Jesper Home ~

B8 8

Sandrine Valério is playing
- Adventure World - An Indlana
Jones Camae. about 3 minete 2g¢

™ NW‘ Brain Sandrine Valério is playing
‘O HOSD ﬁ Buddies > Diamond Dash, abows a mnete 290

g Jesper Richter-Reichhelm i
playing Monster World. 4 morute

P

4 Shaveer Mirpuri played Texas
HOIGEm Poker. “corvores

Jesper Richter-Reichhelm has
carmed 14 of 301 achievements in
Monster World.

eeeno

Borill Boshnakov Is playing
Adverture World - An Indiana
Jones Came. 7 moetes age

' Frank UeBner is playing idle
Worship, 9 mnees 298

Denise Engel is playing
Advenure World -~ An Indiana
Jones Came, 11 min

Sebastian Werner is playing
Diamond Dash. 12 sisutes ag0

Sebastian Werner |5 playing
Monster Woreld, 13 mooutes 90

o e e o Johannes Ippen played
'4 < -
: Adventure World ~ An Indiana

Jones Came., 21 mirutes ago

« = N
0 . ' . Florian Steinhoff played Zombie

Isiand. 20 mirutes 830

Borll Boshnakov Is playing
Adverture World - An Indiana
Jones Came. 7 moster age

Frank LieSner is playing idle
Worship, 9 mnees 299

SaE—— & Denise Engel is playing

XY ! t g ' Advernure World - An Indiana

! Sebastian Werner is playing
Wednesday, March 7, 2012

Our games all look the same

Flash client Backend

i
11T

LT

(I

I

Our games all look the same

Flash client

Game Session

Asynch. Communication

4
e

Wednesday, March 7, 212

Our games all look the same

Backend

State Changes
Validation

Persistence

fifi e
I

N \\\\‘ -

Wednesday, March 7, 2012

But the scale is interesting

14 billion requests / month

Wednesday, March 7, 212

But the scale is interesting

Wednesday, March 7, 212

But the scale is interesting

14 billion requests / month

>100,000 DB operations / second

Wednesday, March 7, 212

But the scale is interesting

14 billion requests / month

>100,000 DB operations / second

>50,000 DB updates / second

Wednesday, March 7, 212

2 Developers to do it all

Typical team setup

4 product managers
4 artists
4 frontend engineers

2 backend engineers

- design, implementation, operation

-

Wednesday, March 7, 2012

Wooga has dedicated game teams

| - | [

- 3 - N !.-utvv. .k -.-”"

.
o L1 Il (g - .
L

L. ..'\'\’

SRARNNAAN AN

T L
FESTATAR AN
AATATTATALA LYY

111111

188)

a
A
o
«

§ ~
<

O
P
©
=
>
©
O
0
o)
=
O
M

Wednesdy, March 7, 2012

]

=
=z =
-
_—
- =
=
-
it
- -
e
-

'\ PETLATAR AN

EAUATATARANAN A

| o‘yﬂ

TN
LAY \I'\l\“\.

TTLEATAARA

PEALUATATARANANAAS

Wednesday, March 7, 2012

‘ B
. .:o p‘-'tr'l* 3 k- A otN — A rwm
» .-t.. .‘

4 r»rt.'lh.

»
o~ '\'\’

v
I
3

-

HoSpi

I

W

PRI
PEALLATATARANY

B e L
-t
4 AR AN B

TV
] 134 ll'\l'\‘\\\{\ ". W

i

Z:
-
-
b 5~
-
-
L~
1
=
| & —
) -
-

TATLAASATARY
PEAATATARANNN A

i

Wednesday, March 7, 2012

D itk p B A L L
TR _H B 1 B J TTATANAANAY
PEALLARALARAANNNAR o YOl 1) r Yk 4 EALAALARARRANANAR

11100000 ! 11110001

-
1§ e v . " IV i L

I LTTTILALAANAG - l . VIALM PEULAAARANANRNNAY
o i ' K 11110001
‘, ' - 111] . 11l

..-.-u-wm‘ ~ i DR L
’ J VATV ‘ .) PATATAVEANY
Wednesday, March 7, 2012

nm\\\\\\\\\\\\\ v §eN % ' o SO
EAAALARERRANANAR Nisaria ‘ . 4 TTATAY
‘ - 4 ' .‘ PEARTATANANNANAR

T LLARRRE
T LLARRRE

III“
Alat

LY e
‘ﬂ‘h

\\;m

nm\\\\\\\\\\\\\ ‘ - - T e s,
PEALUALARLNANNANAR o ‘ . 4 VATV
e 1 TTILTELALRAANAAY

(111

Wednesday, March 7, 2012

Architecture Evolution at Wooga

The Start

The Next Step

Best of Two Worlds

Company Values

Oct 2009: 1st team wanted good code quality

Good code quality

Easy to understand
Easy to test

Easy to refactor

o\ > 4

Wednesday, March 7, 212

Oct 2009: 1st team wanted good code quality

Good code quality

Easy to understand
Easy to test

Easy to refactor

o\ F5S

Wednesday, March 7, 212

Evolution I: Use Ruby (on Rails)

Wednesday, March 7, 2012

A basic setup using sharding worked fine

My My
SQL SQL

Wednesday, March 7, 2012

250K daily users

2,000,000

1,500,000

1,000,000

500,000

el

Apr-10 Jul-10 Oct-10 Jan-11 Apr-11 Jul-11 Oct-11

M\\, @\ — =

Wednesday, March 7, 212

Life was good

250K daily users

2,000,000

1,500,000

1,000,000

500,000

el

Apr-10 Jul-10 Oct-10 Jan-11 Apr-11 Jul-11 Oct-11

M\\, @\ — =

Wednesday, March 7, 212

Life was good NO MORE

Welcome to 6 weeks of pain!

Heavy optimizations were necessary

o\ P> 4

Wednesday, March 7, 212

Welcome to 6 weeks of pain!

Heavy optimizations were necessary

Numerous small fixes regarding DB config

Wednesday, March 7, 2012

Welcome to 6 weeks of pain!

Heavy optimizations were necessary
Numerous small fixes regarding DB config

More shards

Wednesday, March 7, 2012

Welcome to 6 weeks of pain!

Heavy optimizations were necessary

Numerous small fixes regarding DB config
More shards

Even more shards

-

Wednesday, March 7, 2012

Welcome to 6 weeks of pain!

Heavy optimizations were necessary
Numerous small fixes regarding DB config
More shards
Even more shards

Splitting the model to get more shards

Wednesday, March 7, 2012

At 500K daily users we were at a dead end

2,000,000

1,500,000

1,000,000

500,000

0
Apr-10 Jul-10 Oct-10 Jan-11 Apr-11 Jul-11 Oct-11

e

Wednesday, March 7, 212

= .

http://www.flickr.com/photos/billue_the bear/

Wednesday, March 7, 2012

http://www.flickr.com/photos/billue_the_bear/
http://www.flickr.com/photos/billue_the_bear/

Jan 2010: Meanwhile at the 2nd team

Don’t break the bank

Make it faster
Make it cheaper

Make it simpler

o\ F5S

Wednesday, March 7, 212

Jan 2010: Meanwhile at the 2nd team

Don’t break the bank

Make it faster
Make it cheaper

Make it simpler

o\ > 4

Wednesday, March 7, 212

Evolution Il: Use Redis as main database

Wednesday, March 7, 2012

If MySQL is a truck

Fast enough disk based robust

Wednesday, March 7, 2012

If MySQL is a truck, Redis is a race car

Super fast RAM based fragile

Wednesday, March 7, 2012

Bare metal for low latency!

Wednesday, March 7, 2012

How could we apply that knowledge?

2,000,000

1,500,000

1,000,000

500,000

0
Apr-10 Jul-10 Oct-10 Jan-11 Apr-11 Jul-11 Oct-11

e

Wednesday, March 7, 212

On-demand migrations from MySQL to Redis

def self.find(uid)

if not_migrated?(uid)
01dSQL.all(:conditions => {:uid=>uid}).each do loldl|
NewRedis.create_from_old!(old)
end
end

Load from Redis...
Create objects...
end

def not_migrated?(uid)
redis.hsetnx('migrated_ids', uid)
end

Wednesday, March 7, 2012

On-demand migrations from MySQL to Redis

def self.find(uid)

if not_migrated?(uid)
01dSQL.all(:conditions => {:uid=>uid}).each do loldl
NewRedis.create_from_old!(old)
end
end

Load from Redis...
Create objects...
end

def not_migrated?(uid)
redis.hsetnx('migrated_ids', uid)
end

Wednesday, March 7, 2012

On-demand migrations from MySQL to Redis

def self.find(uid)

if not_migrated?(uid)
01dSQL.all(:conditions => {:uid=>uid}).each do loldl|
NewRedis.create_from_old!(old)
end
end

Load from Redis...
Create objects...
end

def not_migrated?(uid)
redis.hsetnx('migrated_ids', uid)
end

Wednesday, March 7, 2012

On-demand migrations from MySQL to Redis

def self.find(uid)

if not_migrated?(uid)
01dSQL.all(:conditions => {:uid=>uid}).each do loldl
NewRedis.create_from_old!(old)
end
end

Load from Redis...
Create objects...
end

def not_migrated?(uid)
redis.hsetnx('migrated_ids', uid)
end

Wednesday, March 7, 2012

On-demand migrations from MySQL to Redis

def self.find(uid)

if not_migrated?(uid)
01dSQL.all(:conditions => {:uid=>uid}).each do loldl|
NewRedis.create_from_old!(old)
end
end

Load from Redis...
Create objects...
end

def not_migrated?(uid)
redis.hsetnx('migrated_ids', uid)
end

Wednesday, March 7, 2012

On-demand migrations from MySQL to Redis

def self.find(uid)

if not_migrated?(uid)
01dSQL.all(:conditions => {:uid=>uid}).each do loldl|
NewRedis.create_from_old!(old)
end
end

Load from Redis...
Create objects...
end

def not_migrated?(uid)
redis.hsetnx('migrated_ids', uid)
end

Wednesday, March 7, 2012

On-demand migrations from MySQL to Redis

def self.find(uid)

if not_migrated?(uid)
01dSQL.all(:conditions => {:uid=>uid}).each do loldl|
NewRedis.create_from_old!(old)
end
end

Load from Redis...
Create objects...
end

def not_migrated?(uid)
redis.hsetnx('migrated_ids', uid)
end

Wednesday, March 7, 2012

Typical migration throughput over 3 days

calls per minute

Big and static data in MySQL, rest goes to Redis

256 GB data 60 GB data

10% writes 50% writes

Wednesday, March 7, 2012

http://www.flickr.com/photos/erix/245657047/
http://www.flickr.com/photos/erix/245657047/

One team saved the other one

2,000,000

1,500,000

1,000,000

500,000

0
Apr-10 Jul-10 Oct-10 Jan-11 Apr-11 Jul-11 Oct-11

o\ P> 4

Wednesday, March 7, 212

One team saved the other one

2,000,000

1,500,000

1,000,000

500,000

0
Apr-10 Jul-10 Oct-10 Jan-11 Apr-11 Jul-11 Oct-11

Wednesday, March 7, 2012

We now have more than 2 million users / day

2,000,000

1,500,000

1,000,000 M

500,000

0
Apr-10 Jul-10 Oct-10 Jan-11 Apr-11 Jul-11 Oct-11

M\\, @\ — =

Wednesday, March 7, 212

We now have more than 2 million users / day

2,000,000
1,500,000
1,000,000 N
AWS outage ~~
500,000 :
in Ireland
0
Apr-10 Jul-10 Oct-10 Jan-11 Apr-11 Jul-11 Oct-11

o\ P> 4

Wednesday, March 7, 212

10 single-points-of-failure - no fun at all!

My My My My My
SQL SQL SQL SQL SQL

Wednesday, March 7, 2012

http://www.flickf.com/photos/wolfsavard/

.
»

Wednesday, March 7, 2012

Architecture Evolution at Wooga

The Start: Ruby

The Next Step
Best of Two Worlds

Company Values

o\ F5S

Wednesday, March 7, 212

Stateless servers and DBs

Server Database

Wednesday, March 7, 2012

Stateless servers and DBs

Server Database

Wednesday, March 7, 2012

Stateless servers and DBs

Server Database

Wednesday, March 7, 2012

Stateless servers and DBs

Server Database

Wednesday, March 7, 2012

Stateless servers and DBs

Server Database

Wednesday, March 7, 2012

Stateless servers and DBs

Server Database

Wednesday, March 7, 2012

Stateful servers and DBs

Server Database

Wednesday, March 7, 2012

Stateful servers and DBs

Server Database

Wednesday, March 7, 2012

Stateful servers and DBs

Server Database

Wednesday, March 7, 2012

Stateful servers and DBs

Server Database

One Game Session

Wednesday, March 7, 2012

Stateful servers and DBs

Server Database

One Game Session

Wednesday, March 7, 2012

Oct 2010: 3rd team used a stateful server

If DBs are the problem
Don’t use them

Store state in server
Need to be robust

Oct 2010: 3rd team used a stateful server

If DBs are the problem A,

Don’t use them
Store state in server

Need to be robust ERLANG

o\ F5S

Wednesday, March 7, 212

Evolution lll: Use Erlang for a stateful server

Wednesday, March 7, 2012

Stateful servers are not as hard as you think

Wednesday, March 7, 2012

Stateful servers are not as hard as you think

ﬂ/ﬁ

Wednesday, March 7, 2012

Stateful servers are not as hard as you think

Server

ﬂ/ﬁ

Wednesday, March 7, 2012

Stateful servers are not as hard as you think

Server

/ﬁ

Wednesday, March 7, 2012

Stateful servers are not as hard as you think

Server

/ﬁ

Wednesday, March 7, 2012

Stateful servers are not as hard as you think

Server

/ﬁ

Wednesday, March 7, 2012

Stateful servers are not as hard as you think

Server

/ﬁ

Wednesday, March 7, 2012

Stateful servers are not as hard as you think

Server

ﬂ/ﬁ

Wednesday, March 7, 2012

Stateful servers are not as hard as you think

Server

ﬂ/ﬁ

Wednesday, March 7, 2012

Stateful servers are not as hard as you think

Server Server Server

Wednesday, March 7, 2012

With stateful server the DB is less used

B Ruby Stateless | Erlang Stateful

30,000

22,500

15,000

7,500

database operations / sec

Wednesday, March 7, 2012

With stateful server the DB is less used

B Ruby Stateless | Erlang Stateful
30,000
22,500
15,000
700
7,500 M
, :

database operations / sec

Wednesday, March 7, 2012

Deploying with a stateful server

In order to bring up a new version

WA\ P> 4

Wednesday, March 7, 212

Deploying with a stateful server

In order to bring up a new version

Just deploy it

Hot code replacement is great!

Wednesday, March 7, 2012

There are even more advantages

Faster than Ruby (5,000 rps / node)
- CPU bound

WA\ P> 4

Wednesday, March 7, 212

There are even more advantages

Faster than Ruby (5,000 rps / node)
- CPU bound

Very few SPOFs

- ... and those are easy to recover

Wednesday, March 7, 2012

There are even more advantages

Faster than Ruby (5,000 rps / node)
- CPU bound

Very few SPOFs

- ... and those are easy to recover

Transactional logic

- Invariants instead of explicit error handling

A\

Wednesday, March 7, 2012

Example “controller” in Erlang

% Harvest or clear a seed. Check food capacity.
handle(?PLOTS, ActionA, Coords, Args, Game)

when ActionA =:= harvest_seed;
ActionA =:= clear_ seed ->
{Effects, NewMap} = k_map:handle(?PLOTS, ActionA, Coords, Args,

map(Game)),

{updated_game([fun (_G) -> {map, NewMap} end,
fun (G) -> {user, k_user:refill(Cuser(G))} end,
fun (G) -> {user, k_user:update(Effects, user(G))} end,
fun (G) -> check_food_cap(G) end],
Game),

done};

Wednesday, March 7, 2012

Example “controller” in Erlang

¥ Harvest or clear a seed. Check food capacity.
handle(?PLOTS, ActionA, Coords, Args, Game)

when ActionA =:= harvest_seed;
ActionA =:= clear_ seed ->
{Effects, NewMap} = k_map:handle(?PLOTS, ActionA, Coords, Args,

map(Game)),

{updated_game([fun (_G) -> {map, NewMap} end,
fun (G) -> {user, k_user:refill(Cuser(G))} end,
fun (G) -> {user, k_user:update(Effects, user(G))} end,
fun (G) -> check_food_cap(G) end],
Game),

done};

Wednesday, March 7, 2012

Example “controller” in Erlang

% Harvest or clear a seed. Check food capacity.
handle(?PLOTS, ActionA, Coords, Args, Game)

when ActionA =:= harvest_seed;
ActionA =:= clear_seed ->
{Effects, NewMap} = k_map:handle(?PLOTS, ActionA, Coords, Args,

map(Game)),

{updated_game([fun (_G) -> {map, NewMap} end,
fun (G) -> {user, k_user:refill(Cuser(G))} end,
fun (G) -> {user, k_user:update(Effects, user(G))} end,
fun (G) -> check_food_cap(G) end],
Game),

done};

Wednesday, March 7, 2012

Example “controller” in Erlang

% Harvest or clear a seed. Check food capacity.
handle(?PLOTS, ActionA, Coords, Args, Game)

when ActionA =:= harvest_seed;
ActionA =:= clear_ seed ->
{Effects, NewMap} = k_map:handle(?PLOTS, ActionA, Coords, Args,

map(Game)),

{updated_game([fun (_G) -> {map, NewMap} end,
fun (G) -> {user, k_user:refill(user(G))} end,
fun (G) -> {user, k_user:update(Effects, user(G))} end,
fun (G) -> check_food_cap(G) end],
Game),

done};

Wednesday, March 7, 2012

Example “controller” in Erlang

% Harvest or clear a seed. Check food capacity.
handle(?PLOTS, ActionA, Coords, Args, Game)

when ActionA =:= harvest_seed;
ActionA =:= clear_ seed ->
{Effects, NewMap} = k_map:handle(?PLOTS, ActionA, Coords, Args,

map(Game)),

{updated_game([fun (_G) -> {map, NewMap} end,
fun (G) -> {user, k_user:refill(Cuser(G))} end,
fun (G) -> {user, k_user:update(Effects, user(G))} end,
fun (G) -> check_food_cap(G) end],
Game),

done};

Central handling of effects

Wednesday, March 7, 2012

Example “controller” in Erlang

% Harvest or clear a seed. Check food capacity.
handle(?PLOTS, ActionA, Coords, Args, Game)

when ActionA =:= harvest_seed;
ActionA =:= clear_seed ->
{Effects, NewMap} = k_map:handle(?PLOTS, ActionA, Coords, Args,

map(Game)),

{updated_game([fun (_G) -> {map, NewMap} end,
fun (G) -> {user, k_user:refill(Cuser(G))} end,
fun (G) -> {user, k_user:update(Effects, user(G))} end,
fun (G) -> check_food_cap(G) end],
Game),

done};

Central handling of effects

Transactional behavior

Wednesday, March 7, 2012

Example model in Erlang

harvest(#seed{id = Id} = Seed, BoostPercentage) ->
verify_seed_ready(Seed),
verify_not_withered(Seed),

ContractReward = k_seed_config:reward(Id),
Reward = k _utils:ceil(ContractReward * (1 + BoostPercentage / 100)),

UserEffects = [?GAIN_FOOD(Reward),

?ADD_XP(k_seed_config:xp_reward(Id))],
{UserEffects, undefined}.

Wednesday, March 7, 2012

Example model in Erlang

harvest(#seed{id = Id} = Seed, BoostPercentage) ->
verify_seed_ready(Seed),
verify_not_withered(Seed),

ContractReward = k_seed_config:reward(Id),
Reward = k _utils:ceil(ContractReward * (1 + BoostPercentage / 100)),

UserEffects = [?GAIN_FOOD(Reward),

?ADD_XP(k_seed_config:xp_reward(Id))],
{UserEffects, undefined}.

Wednesday, March 7, 2012

Example model in Erlang

harvest(#seed{id = Id} = Seed, BoostPercentage) ->
verify_seed_ready(Seed),
verify_not_withered(Seed),

ContractReward = k_seed_config:reward(Id),
Reward = k _utils:ceil(ContractReward * (1 + BoostPercentage / 100)),

UserEffects = [?GAIN_FOOD(Reward),

?ADD_XP(k_seed_config:xp_reward(Id))],
{UserEffects, undefined}.

Wednesday, March 7, 2012

Example model in Erlang

harvest(#seed{id = Id} = Seed, BoostPercentage) ->
verify_seed_ready(Seed),
verify_not_withered(Seed),

ContractReward = k_seed_config:reward(Id),
Reward = k_utils:ceil(ContractReward * (1 + BoostPercentage / 100)),

UserEffects = [?GAIN_FOOD(Reward),

?ADD_XP(k_seed_config:xp_reward(Id))],
{UserEffects, undefined}.

Wednesday, March 7, 2012

Example model in Erlang

harvest(#seed{id = Id} = Seed, BoostPercentage) ->
verify_seed_ready(Seed),
verify_not_withered(Seed),

ContractReward = k_seed_config:reward(Id),
Reward = k _utils:ceil(ContractReward * (1 + BoostPercentage / 100)),

UserEffects = [?GAIN_FOOD(Reward),

?ADD_XP(k_seed_config:xp_reward(Id))],
{UserEffects, undefined}.

Wednesday, March 7, 2012

Example model in Erlang

harvest(#seed{id = Id} = Seed, BoostPercentage) ->
verify_seed_ready(Seed),
verify_not_withered(Seed),

ContractReward = k_seed_config:reward(Id),
Reward = k_utils:ceil(ContractReward * (1 + BoostPercentage / 100)),

UserEffects = [?GAIN_FOOD(Reward),

?ADD_XP(k_seed_config:xp_reward(Id))],
{UserEffects, undefined}.

Erlang code is not that hard to read, isn’t it?

Wednesday, March 7, 2012

Wednesday, March 7, 2012

http://www.flickr.com/photos/hotreactor/
http://www.flickr.com/photos/hotreactor/

Architecture Evolution at Wooga

The Start: Ruby

The Next Step: Erlang

Best of Two Worlds

Company Values

o\ F5S

Wednesday, March 7, 212

Aug 2011: 4th team wanted both

Erlang is great

Concurrency, robustness

Great for operation

Aug 2011: 4th team wanted both

Erlang is great

Concurrency, robustness
Great for operation

Ruby is great

Concise, expressive, testable
Great for development

A\

Wednesday, March 7, 2012

Aug 2011: 4th team wanted both

Erlang is great A,

Concurrency, robustness
Great for operation

ERLANG
Ruby is great

Concise, expressive, testable

Great for development

.-

Wednesday, March 7, 2012

Aug 2011: 4th team wanted both

Erlang is great A,

Concurrency, robustness
Great for operation

ERLANG
Ruby is great

Concise, expressive, testable
Great for development

.-

Wednesday, March 7, 2012

Evolution IV: The best out of two worlds

Wednesday, March 7, 212

The basic setup looks exactly like before

Server

Example controller in Ruby

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]
fruit_trees[x, y].shake
end

Wednesday, March 7, 2012

Example controller in Ruby

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]
fruit_trees[x, y].shake
end

Wednesday, March 7, 2012

Example controller in Ruby

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]
fruit_trees[x, y].shake
end

Wednesday, March 7, 2012

Example controller in Ruby

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Y = params[:x], params[:y]
fruit_trees[x, y].shake
end

Wednesday, March 7, 2012

Example controller in Ruby

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]

fruit_trees[x, y].shake
end

DSL-like definition of game action

Wednesday, March 7, 2012

Example controller in Ruby

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]
fruit_trees[x, y].shake
end

DSL-like definition of game action

Skinny as controllers should be

Wednesday, March 7, 2012

Example model in Ruby

class FruitTree < Tree

property :last_shake_time, :type => Integer, :default => 0
property :collectable_fruit_count, :type => Integer, :default => 0

def shake
raise G8::Error::Validation, "no fruit!" unless carries_fruit?

session.user.xp += 1

session.user.energy -= 1

self.last_shake_time = game_time

self.collectable_fruit_count = config.fruit_count
end

end

Wednesday, March 7, 2012

Example model in Ruby

class FruitTree < Tree

property :last_shake_time, :type => Integer, :default => 0
property :collectable_fruit_count, :type => Integer, :default => 0

def shake
raise G8::Error::Validation, "no fruit!" unless carries_fruit?

session.user.xp += 1

session.user.energy -= 1

self.last_shake_time = game_time
self.collectable_fruit_count = config.fruit_count

end

end

Wednesday, March 7, 2012

Example model in Ruby

class FruitTree < Tree

property :last_shake_time, :type => Integer, :default => 0
property :collectable_fruit_count, :type => Integer, :default => 0

def shake
raise G8::Error::Validation, "no fruit!" unless carries_fruit?

session.user.xp += 1

session.user.energy -= 1

self.last_shake_time = game_time
self.collectable_fruit_count = config.fruit_count

end

end

Wednesday, March 7, 2012

Example model in Ruby

class FruitTree < Tree

property :last_shake_time, :type => Integer, :default => 0
property :collectable_fruit_count, :type => Integer, :default => 0

def shake
raise G8::Error::Validation, "no fruit!" unless carries_fruit?

session.user.xp += 1

session.user.energy -= 1

self.last_shake_time = game_time
self.collectable_fruit_count = config.fruit_count

end

end

Wednesday, March 7, 2012

Example model in Ruby

class FruitTree < Tree

property :last_shake_time, :type => Integer, :default => 0
property :collectable_fruit_count, :type => Integer, :default => 0

def shake
raise G8::Error::Validation, "no fruit!" unless carries_fruit?

session.user.xp += 1

session.user.energy -= 1

self.last_shake_time = game_time

self.collectable_fruit_count = config.fruit_count
end

end

Easily unit testable

Wednesday, March 7, 2012

Example model in Ruby

class FruitTree < Tree

property :last_shake_time, :type => Integer, :default => 0
property :collectable_fruit_count, :type => Integer, :default => 0

def shake
raise G8::Error::Validation, "no fruit!" unless carries_fruit?

session.user.xp += 1

session.user.energy -= 1

self.last_shake_time = game_time

self.collectable_fruit_count = config.fruit_count
end

end

Easily unit testable

Minimal amount of code

Wednesday, March 7, 2012

Bringing 2 worlds together

Server

Bringing 2 worlds together

Bringing 2 worlds together

Bringing 2 worlds together

Bringing 2 worlds together

Bringing 2 worlds together

Game state

Game state is split in multiple parts

user, map, fruit_trees etc.

o\ > 4

Wednesday, March 7, 212

Game state

Game state is split in multiple parts

user, map, fruit_trees etc.

Erlang does not care about content
Serialized Ruby objects

A\

Wednesday, March 7, 2012

Game state

Game state is split in multiple parts

user, map, fruit_trees etc.

Erlang does not care about content
Serialized Ruby objects

Erlang does know mapping of state parts to URLs
Mapping provided by Ruby on startup

Wednesday, March 7, 012

Looking back at the game action

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]
fruit_trees[x, y].shake
end

Wednesday, March 7, 2012

Looking back at the game action

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]
fruit_trees[x, y].shake
end

Wednesday, March 7, 2012

Looking back at the game action

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]

fruit_trees[x, y].shake
end

Mapping of state parts to game actions

Wednesday, March 7, 2012

Looking back at the game action

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]
fruit_trees[x, y].shake
end

Mapping of state parts to game actions
Worker knows mapping

Wednesday, March 7, 2012

Looking back at the game action

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Yy = params[:x], params[:y]

fruit_trees[x, y].shake
end

Mapping of state parts to game actions

Worker knows mapping
Worker pushes mapping to Erlang on startup

Wednesday, March 7, 2012

Looking back at the game action

game_action '/:actor/fruit_tree/self/shake’,
:affects => [:fruit_trees, :user] do |responsel

X, Y = params[:x], params[:y]

fruit_trees[x, y].shake
end

Mapping of state parts to game actions

Worker knows mapping
Worker pushes mapping to Erlang on startup
Erlang can query mapping if needed

Wednesday, March 7, 2012

http://www.flickr.com/photos/aigle_dore/

Wednesday, March 7, 2012

http://www.flickr.com/photos/aigle_dore/
http://www.flickr.com/photos/aigle_dore/

Architecture Evolution at Wooga

The Start: Ruby

The Next Step: Erlang
Best of Two Worlds

Company Values

o\ F5S

Wednesday, March 7, 212

Each new game brought us innovation

Wednesday, March 7, 212

We’ve learned to value

Small teams

over
big teams

We’ve learned to value

Collaboration

over
competition

We’ve learned to value

Generalists

over
specialists

We’ve learned to value

Effort reduction

over
cost reduction

We’ve learned to value

Innovation

over
risk mitigation

A good value system

We’ve learned to value

Small teams
Collaboration
Generalists
Effort reduction

Innovation

over

over

over

over

over

Big teams
Competition
Specialists
Cost reduction

Risk mitigation

Wednesday, March 7, 2012

1€ works!

Wednesday, March 7, 2012

1€ works!

Be fast, be bold!

Questions?

Jesper Richter-Reichhelm
@jrirei ™

slideshare.net/wooga
wooga.com/jobs

.MJ....N
i~=

world of gaming

Wednesday, March 7, 2012

