
twitter.com/ekabanov

Do you really get
classloaders?

Jevgeni Kabanov

CEO & Founder of ZeroTurnaround

twitter.com/ekabanov

twitter.com/ekabanov

Over 50 million builds, redeploys & restarts
prevented for 30,000+ Java developers

(how awesome is that?)

Free!
social.jrebel.com

twitter.com/ekabanov

twitter.com/ekabanov twitter.com/ekabanov

To create JRebel we…

!  Hooked into class loading on the JVM
level

!  Integrated with the class loading
mechanism in more than 10 different
servers

!  Solved hundreds of issues connected to
class loading

!  Learned a lot more about class loaders
than we wanted to J

twitter.com/ekabanov twitter.com/ekabanov

Inspirations

!  Vijay Saraswat, Java is not type-safe,
1997

! Sheng Liang and Gilad Bracha, Dynamic
Class Loading in the Java Virtual Machine
in Proc. of the ACM Conf. on Object-
Oriented Programming, Systems,
Languages and Applications, October
1998.

twitter.com/ekabanov twitter.com/ekabanov

Overview

!  Basics
!  What is class loading?
!  How was it meant to work?

!  Problems and solutions
!  How do class loaders leak?
! OSGi, Spring dm, JBoss and others
!  Conclusions

twitter.com/ekabanov

BASICS

twitter.com/ekabanov twitter.com/ekabanov

Class loader API

public abstract class ClassLoader {	
 public Class loadClass(String name);	
 protected Class defineClass(byte[] b);	
	
 public URL getResource(String name);	
 public Enumeration getResources(String
name);	

	
 public ClassLoader getParent()	
}

twitter.com/ekabanov twitter.com/ekabanov

Class loading

public class A {	
 public void doSmth() {	
 B b = new B();	
 b.doSmthElse();	
 }	
}

Causes a call to
A.class.getClassLoader().loadClass(“B”);

twitter.com/ekabanov twitter.com/ekabanov

Delegation

!  Class loaders have a parent class loader
!  The parent is usually consulted first

!  Avoids loading same class several times
!  However in a Java EE web module local

classes are searched first
!  In Java EE each WAR module of an EAR

gets its own class loader
!  This allows separate namespaces for

applications in same container

twitter.com/ekabanov twitter.com/ekabanov

Java EE Delegation

twitter.com/ekabanov

PROBLEMS AND SOLUTIONS

twitter.com/ekabanov twitter.com/ekabanov

No class found

!  Variants
! ClassNotFoundException
! ClassNoDefFoundException

!  Helpful
!  IDE class lookup (Ctrl+Shift+T in Eclipse)
!  find *.jar -exec jar -tf '{}' \; | grep MyClass
! URLClassLoader.getUrls()
!  Container specific logs

twitter.com/ekabanov twitter.com/ekabanov

Wrong class found

!  Variants
! IncompatibleClassChangeError

! AbstractMethodError
! NoSuch(Method|Field)FoundError

! ClassCastException, IllegalAccessError
!  Helpful

!  -verbose:class
! ClassLoader.getResource()
! javap -private MyClass

twitter.com/ekabanov twitter.com/ekabanov

More than one class found

!  Variants
! LinkageError (class loading constraints

violated)
! ClassCastException, IllegalAccessError

!  Helpful
!  -verbose:class
! ClassLoader.getResource()

twitter.com/ekabanov twitter.com/ekabanov

More than one class found

Util3 u = (Util3) Factory3.instanceUntyped();	

Factory3.instanceUntyped(); new Util3()

twitter.com/ekabanov twitter.com/ekabanov

Reloading an Object

twitter.com/ekabanov twitter.com/ekabanov

Leaking ClassLoaders

twitter.com/ekabanov twitter.com/ekabanov

Leaking ClassLoaders

twitter.com/ekabanov

STATE OF THE ART

twitter.com/ekabanov twitter.com/ekabanov

Hierarchy is not enough?

!  Isolation
!  Different versions of the same library

!  Performance
!  Class lookup is very slow

!  Restricted
!  Why siblings can’t see each other’s classes?

! OSGi, JBoss, NetBeans and others
implement a different system

twitter.com/ekabanov twitter.com/ekabanov

The Modern Way

!  Each JAR has own class loader
!  All class loaders are siblings, with one

central repository
!  Each JAR explicitly declares

!  Packages it exports
!  Packages it imports

!  Repository can find relevant class loaders
by package

twitter.com/ekabanov twitter.com/ekabanov

Modern Filtering
class MClassLoader extends ClassLoader {	
 // Initialized during startup from imports	
 Set<String> imps;	
	
 public Class loadClass(String name) {	
 String pkg = name.substring(0, 	
 name.lastIndexOf('.'));	
	
 if (!imps.contains(pkg))	
 return null;	
	
 return repository.loadClass(name);	
 }	
}	

twitter.com/ekabanov twitter.com/ekabanov

Modern Lookup
class MRepository {	
 // Initialized during startup from exports	
 Map<String,List<MClassLoader>> exps;	
	
 public Class loadClass(String name) {	
 String pkg = name.substring(0, 	
 name.lastIndexOf('.'));	
 for (MClassLoader cl : exps.get(pkg)) {	
 Class result = cl.loadLocalClass(name);	
 if (result != null) return result;	
 }	
 return null;	
 }	
}	

twitter.com/ekabanov twitter.com/ekabanov

Troubleshooting

!  The same tricks also work with Modern
class loading systems
! ClassLoader.getResource();
!  -verbose:class

!  Often can be supplemented with custom
tools

!  Need to think in terms of export/import in
addition to classpath
!  Looking at the pseudocode can help

twitter.com/ekabanov twitter.com/ekabanov

Problems

!  Too restrictive
!  Import is a one-way street
!  If you want to use Hibernate, you import it, but

it cannot access your classes
!  Easy to leak

!  Any references between class loaders are
leaks waiting to happen

!  Deadlocks
!  JVM enforces a global lock on loadClass()

twitter.com/ekabanov

HOW CAN WE FIX IT?

twitter.com/ekabanov twitter.com/ekabanov

Processes

!  Processes are a natural abstraction for
isolation

!  Widely used outside Java: .NET, Dynamic
Languages and even browsers

!  JSR 121: Application Isolation API
Specification
!  Created in 2001
!  Last update in 2005

twitter.com/ekabanov twitter.com/ekabanov

In-App Updates

!  Update the app code and resources, while
keeping it running

!  Like Databases
!  But without transactions
!  May need to handle structural updates

! LiveRebel is our product that does that
!  Makes small updates cheap!
!  Also automates rolling restarts!

twitter.com/ekabanov twitter.com/ekabanov

Conclusions

!  When solving classloading problems it’s
very important to validate assumptions

!  To leak a ClassLoader it’s enough to
leak any object of class loaded in that
ClassLoader

!  Processes are the only isolation
abstraction that works for updates

!  In-app updates a (symbiotic) alternative

twitter.com/ekabanov twitter.com/ekabanov

Visit our booth at 5th floor

twitter.com/ekabanov

Q?

