
Building highly
available systems

in Erlang

Joe Armstrong

Saturday, March 3, 2012

How can we get

10 nines reliability?

Saturday, March 3, 2012

Erlang was
designed to program

fault-tolerant
systems

Why Erlang?

Saturday, March 3, 2012

Overview
n Types of HA systems

n Architecture/Algorithms

n HA data

n The six rules for building HA systems

n Quotes on system building

n How the six rules are programmed in Erlang

Saturday, March 3, 2012

Types of HA

n Washing machine/pacemaker

n Deep-space mission (Voyager 1 & 2)

n Aircraft control systems

n Internet applications this talk

n ...

Saturday, March 3, 2012

“Internet” HA

n Always on-line

n Soft real-time

n Code upgrade on-the-fly

n Once started never stopped - evolving

n Very scalable (one machine to planet-wise)

Saturday, March 3, 2012

Highly available data
n Data is sacred - but we

need multiple copies
with independent paths
to the data.

n Computation can be
performed anywhere

n Note: in “washing machine”
HA - the data and the
computation are in the
same place.

C

S S S

S

P = probability of
loosing data on one
machine = 10-3

Probability of loosing
data with
4 machines = 10-12

Saturday, March 3, 2012

Where is my data?

data

Computer

Imagine 10 million computers.
My data is in ten of them.
To find my data I need to know where it is

Key = [5,26,61,...]

Saturday, March 3, 2012

Architectures/algorithms

C

S S

C

S S

L

S S

S

C

C

L

S Server

Client

Load balancer

“traditional”
architectures

Saturday, March 3, 2012

Chord
S

C

S

S

S

S S

S

S

S

S1 IP = 235.23.34.12
S2 IP = 223.23.141.53
S2 IP = 122.67.12.23
..
md5(ip(s1)) = C82D4DB065065DBDCDADFBC5A727208E
md5(ip(s2)) = 099340C20A42E004716233AB216761C3
md5(ip(s3)) = A0E607462A563C4D8CCDB8194E3DEC8B

Sorted
099340C20A42E004716233AB216761C3 => s2
A0E607462A563C4D8CCDB8194E3DEC8B => s3
C82D4DB065065DBDCDADFBC5A727208E => s1
...

lookup Key = "mail-23412"
md5(“mail-23412”) =>
 B91AF709D7C1E6988FCEE7ADF7094A26

So the Value is on machine s3 (first machine
with Md5 lower than md5 of key)

Replica
md5(md5(“mail-23412”)) =>
 D604E7A54DC18FD7AC70D12468C34B63

So the replica is on machine s1

Main idea
Hash keys & IP addresses into
the same namespace

Saturday, March 3, 2012

Failure probabilities
n Assume we keep 9 replicas (odd number)

n We want to retrieve 5 copies (more than half)

n works with 1 .. 4 machine failing - but if 5 fail
we’re screwed

n If probability of 1 failure 10-2 the probability of 5
failing at the same time =10-10

Saturday, March 3, 2012

Collect five copies in parallel

P

PP

P

P

P

P

P

P

P

P Peer

So making 5
replicas takes
the same time
as two

“P2P is the new client-server”

Saturday, March 3, 2012

The problem of
reliable storage

of data
has been solved

Saturday, March 3, 2012

How do we
write
the

code?

Saturday, March 3, 2012

SIX RULES

Saturday, March 3, 2012

ONE

ISOLATION

Saturday, March 3, 2012

Isolation

n Things must be isolated

n 10 nines = 99.99999999% availability

n P(fail) = 10-10

n If P(fail | one computer) = 10-3 then
 P(fail | four computers) = 10-12

Saturday, March 3, 2012

TWO

CONCURRENCY

Saturday, March 3, 2012

Concurrency

n World is concurrent

n Many problems are Embarrassingly Parallel

n Need at least TWO computers to make a non-stop
system (or a few hundred)

n TWO or more computers = concurrent and
distributed

Saturday, March 3, 2012

THREE

MUST
DETECT FAILURES

Saturday, March 3, 2012

Failure detection

n If you can’t detect a failure you can’t fix it

n Must work across machine boundaries
the entire machine might fail

n Implies distributed error handling,
no shared state,
asynchronous messaging

Saturday, March 3, 2012

FOUR

FAULT
IDENTIFICATION

Saturday, March 3, 2012

Fault Identification

n Fault detection is not enough - you must no why
the failure occurred

n Implies that you have sufficient information for
post hock debugging

Saturday, March 3, 2012

FIVE

LIVE
CODE

UPGRADE

Saturday, March 3, 2012

Live code upgrade

n Must upgrade software while it is running

n Want zero down time

n Once a system is started we never stop it

Saturday, March 3, 2012

SIX

STABLE
STORAGE

Saturday, March 3, 2012

Stable storage

n Must store stuff forever

n No backup necessary - storage just works

n Implies multiple copies, distribution, ...

n Must keep crash reports

Saturday, March 3, 2012

QUOTES

Saturday, March 3, 2012

 Those who cannot learn from history are
doomed to repeat it.

George Santayana

Saturday, March 3, 2012

GRAY
As with hardware, the key to software fault-tolerance is to
hierarchically decompose large systems into modules, each module being
a unit of service and a unit of failure. A failure of a module does
not propagate beyond the module.

...

 The process achieves fault containment by sharing no state with
other processes; its only contact with other processes is via messages
carried by a kernel message system

- Jim Gray
- Why do computers stop and what can be done about it
- Technical Report, 85.7 - Tandem Computers,1985

Saturday, March 3, 2012

GRAY
n Fault containment through fail-fast software modules.
n Process-pairs to tolerant hardware and transient software faults.
n Transaction mechanisms to provide data and message integrity.
n Transaction mechanisms combined with process-pairs to ease

exception handling and tolerate software fault
n Software modularity through processes and messages.

Saturday, March 3, 2012

Fail fast
The process approach to fault isolation advocates that the process
software be fail-fast, it should either function correctly or it
should detect the fault, signal failure and stop operating.

 Processes are made fail-fast by defensive programming. They check
all their inputs, intermediate results and data structures as a matter
of course. If any error is detected, they signal a failure and stop. In
the terminology of [Christian], fail-fast software has small fault
detection latency.

Gray
Why ...

Saturday, March 3, 2012

Fail early
A fault in a software system can cause one or more
errors. The latency time which is the interval between
the existence of the fault and the occurrence of the
error can be very high, which complicates the
backwards analysis of an error ...

For an effective error handling we must detect errors and
failures as early as possible

Renzel -
Error Handling for Business Information Systems,

Software Design and Management, GmbH & Co. KG, München, 2003

Saturday, March 3, 2012

KAY
Folks --

Just a gentle reminder that I took some pains at the last OOPSLA to
try to remind everyone that Smalltalk is not only NOT its syntax or
the class library, it is not even about classes. I'm sorry that I long ago
coined the term "objects" for this topic because it gets many people to
focus on the lesser idea.

The big idea is "messaging" -- that is what the kernel of Smalltalk/
Squeak is all about (and it's something that was never quite completed
in our Xerox PARC phase)....

http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/
017019.html

Saturday, March 3, 2012

http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html

SCHNEIDER
Halt on failure in the event of an error a processor
should halt instead of performing a possibly erroneous
operation.

Failure status property when a processor fails,
other processors in the system must be informed. The
reason for failure must be communicated.

Stable Storage Property The storage of a processor
should be partitioned into stable storage (which
survives a processor crash) and volatile storage which
is lost if a processor crashes.

Schneider
ACM Computing Surveys 22(4):229-319, 1990

Saturday, March 3, 2012

ARMSTRONG
n Processes are the units of error encapsulation. Errors

occurring in a process will not affect other processes in the
system. We call this property strong isolation.

n Processes do what they are supposed to do or fail as soon
as possible.

n Failure and the reason for failure can be detected by
remote processes.

n Processes share no state, but communicate by message
passing.

Armstrong
Making reliable systems in the presence of software errors

PhD Thesis, KTH, 2003

Saturday, March 3, 2012

Programming

Saturday, March 3, 2012

How do we program
our six rules?

n Use a library?

n Use a programming language designed for this

Saturday, March 3, 2012

Erlang was
designed

to program
fault-tolerant

systems

Saturday, March 3, 2012

How we implement the
six rules in Erlang

Saturday, March 3, 2012

Rule 1 = Isolation

n Erlang processes are isolated

n One process cannot damage another

n One Erlang node can have millions of processes

n Process have no shared memory

n Process are very lightweight

Saturday, March 3, 2012

Rule 2 = Concurrency
n Erlang processes are concurrent

n All processes run in parallel (in theory)

n On a multi-core the processes spread over the
cores

Pid = spawn(fun() -> ... end)

Pid ! Message

receive
 Pattern1 -> Actions1;
 Pattern2 -> Actions2;
 Pattern3 -> Actions3;
 ...
end

Saturday, March 3, 2012

Rule 3 = Failure detection
n Erlang processes can detect failures

Pid = spawn_link(fun() -> ... end),
process_flag(trap_exit, true)

receive
 {‘EXIT’, Pid, Why} ->
 ...
end

n Can link to a remote process

Saturday, March 3, 2012

Fix the error somewhere else

A B

A is a black box.
It might be an entire machine
If an entire machine crashes
another machine must fix the problem

Saturday, March 3, 2012

Rule 4 - fault identification

n Erlang error signals contain error descriptors

Pid = spawn_link(fun() -> ... end),
process_flag(trap_exit, true)

receive
 {‘EXIT’, Pid, Why} ->
 error_log:log_error({erlang:now(),Pid,Why})
 ...
end

Saturday, March 3, 2012

Rule 5 - live code upgrade

n Erlang can be modified as it runs

-module(foo).

...

f1(X) ->
 foo:bar(X), %% Call the latest version of foo:bar
 bar(X). %% Call this version of bar

bar(X) ->
 ...

n Applications can be upgraded as they run (this
is a large part of OTP)

Saturday, March 3, 2012

Rule 6 - Stable storage

n Use mnesia - highly customizable - can store
data on disk + RAM, can RAM replicate etc.

n Use third-party storage - Riak, CouchDB etc

Saturday, March 3, 2012

Fault tolerance implies
scalability

n To make things fault-tolerant we have to make sure
they are made from isolated components

n If the components are isolated they can be run in
parallel

n Things that are isolated and can be run in parallel
are scalable

Saturday, March 3, 2012

Erlang
n Very light-weight processes
n Very fast message passing
n Total separation between processes
n Automatic marshalling/demarshalling
n Fast sequential code
n Strict functional code
n Dynamic typing
n Transparent distribution
n Compose sequential AND concurrent code

Saturday, March 3, 2012

Properties

n No sharing
n Hot code replacement
n Pure message passing
n No locks
n Lots of computers (= fault tolerant scalable ...)
n Functional programming (controlled side effects)

Saturday, March 3, 2012

What is COP?

➡ Large numbers of processes
➡ Complete isolation between processes
➡ Location transparency
➡ No Sharing of data
➡ Pure message passing systems

Machine

Process

Message

Saturday, March 3, 2012

No Mutable State
n Mutable state needs locks

n No mutable state = no locks = programmers bliss

Saturday, March 3, 2012

Projects
n CouchDB
n Amazon SimpleDB
n Mochiweb (facebook chat)
n Scalaris
n Nitrogren
n Ejabberd (xmpp)
n Rabbit MQ (amqp)
n Riak

Saturday, March 3, 2012

Companies

n Ericsson
n Amazon
n Tail-f
n Klarna
n Facebook
n ...

Saturday, March 3, 2012

Books

http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf

Saturday, March 3, 2012

http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf
http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf

QUESTIONS

Saturday, March 3, 2012

