
Runtime Analytics
or finding out what your users
really think of your software

Jonathan Allin
Product manager and evangelist

1

A definition for
Runtime Analytics

2

Error	
 reports	

Feature	

usage	

Pla/orm	

informa4on	

Regional	

informa4on	

Log	
 files	
 Run4me	

data	

Web	

analy4cs	

Error	

reports	

UX	

analysis	

Run4me	

behaviour	

Applica4on	

Lifecycle	

Management	

integra4on	

Direct	

customer	

support	

Incident	

Tracking	

integra4on	

Speed	
 of	

adop4on	

1.	
 Collects	
 and	
 stores	

comprehensive	
 informa5on	

about	
 how	
 users	
 interact	

with	
 your	
 applica5ons	

2.	
 Provides	

func5ons	
 and	

reports	
 to	
 analyse	

the	
 informa5on	

3.	
 And	
 tools	

that	
 act	
 on	
 the	

informa5on	

3

Upgrade

Specification
&

requirements

Design &
Development

Test and
debug

Early access
program &
Release

Support,
maintenance,

system
monitoring

Runtime Analytics
is applicable to all

stages of
development

Product research
supported by runtime
data and real usage

information

Targeted product
development

Measure runtime
behaviour

Optimise performance

Problems identified
early and quickly

diagnosed

Automatic response to
test failures

Save time and resource

Maximise value of EAP

Validate changes
quickly

Release with
confidence

Quickly identify and
diagnose problems

Comprehensive

dashboard provides end
to end system

monitoring

Customer database and
licensing information

Maintain customer

contact

Who wants to
know what

4

Developer

Marketing

Sales

Prod, proj
Manager

Tester

Drop-out funnel
From first contact with the user to

purchase and successful use

Region and culture
Variation of use by region or

culture

Tasks and use case
How users attempt to execute a
task and how long it takes them

Feature adoption
How often is the feature used

How long does it take to discover
and start using it

Error reporting support
Contextual information for error

reports

Platform information
Versions of OS and other software
Hardware details, eg CPU, memory

Runtime behaviour
Response time

Resource consumption

UX designer

A/B testing
Selecting the right message

Getting the UX right

We need to know what's
valuable

•  How often is a
feature used?
–  Data from The

Standish Group

5

Never	

45%	

Rarely	

19%	

Some4mes	

16%	

OPen	

13%	

Always	

7%	

Do you ever automatically gather data
on how your applications are used?

•  Only 14% of
respondents make
regular use of
runtime analytics
–  Data from Red Gate

survey. ~220
respondents

6

Have	
 not	

heard	
 of	
 the	

idea	

11%	

Have	
 heard	

of	
 the	
 idea,	

but	
 not	

relevant	

20%	

Interested	
 in	

doing	
 it	

28%	

Have	
 tried	
 it	

but	
 not	
 used	

in	

deployment	

10%	

Have	
 used	
 it	

in	
 at	
 least	

one	

applica4on	

17%	

Use	
 it	
 in	
 most	

or	
 all	
 of	
 our	

applica4ons	

14%	

Two contentions

1.  We should all be concerned about how
our customers use our products

–  and how our products behave in the field

2.  Runtime analytics will multiply ROI
–  It's not just an incremental benefit

7

ANTS Memory Profiler

0%

20%

40%

60%

80%

100%

v7.0 v7.1 v7.2

Percentage of sessions in which a memory
snapshot was taken by new users

8

Build Measure Learn

9

Visualise,
analyse

Act. Make
intelligent
choices

Build

Test

Deploy

Capture
and store

data

Runtime
Analytics

Potential road bump!
Install

CfU, licensing
Help

Web pages
Shopping cart

This includes
creating new
hypotheses

"Continuous analytics
are an early step

toward continuous
feedback"

(Forrester)

Lean Startup

•  You have a promising idea
•  But there are lots of unknowns

1.  Is there a market
2.  Can you reach the market
3.  Is it technically feasible
4.  ...

10

Lean Startup in principle

•  Get answers to the big unknowns as
quickly and painlessly as possible

•  Break down these unknowns into
experiments of one or two weeks
– Form a testable question
– Run the experiment
– Adapt the product

11

The "product" could
be a marketing

message, a report
mock-up, a magic

website, or a minimal
implementation

An "experiment" can
be an investigation,
updating a website,
releasing the next

version, ...

Lean Startup in practice
•  Experiments replace Agile Sprints
•  Fast validated learning cycles

•  Swarming

–  Can appear inefficient
–  But maintains velocity
–  Reduces work in progress

•  Fix as you go
–  Don't stack up issues and faults in a tracking system

•  Weekly discussions
–  Review results of completed experiment(s)
–  Adjust expectations
–  Build new experiments to test new expectations

12

Runtime Analytics
Provides automatic data collection (from website or application)
Keeps your key metrics up-to-date and visible to the whole team

Augments, but doesn't replace, direct customer contact

•  h  Build  Measure  Learn 

Unknown #1: Is there a market?

•  Can you identify a value proposition for your potential market?
•  Magic website

–  Minimal content
–  Find out if customers are interested

•  Measuring hits provides little information
–  Collect email addresses

•  Don't ask for lots of details
•  Talk to a few people who represent the market

–  ie are proxies for the market
–  Present the simplest possible product

•  eg mocked up screen shots, Flash demo, paper reports, a verbal
picture, ...

–  Is your proposition of value to them?
–  If not, modify your proposition (or bail out)

13

Building the simplest product
•  MVP: Minimal viable product

–  Has a value proposition
•  ie customers would pay something for it

–  Can be implemented quickly and easily
•  May deliver just a single feature
•  No bells and whistles

•  Measure the response
–  Runtime analytics
–  Talk to your market proxies

•  Learn, eg
–  Is it being used as you expected
–  Is it being used successfully
–  Is it sticky

•  Continue around the loop
–  Modify and extend the product based on what you have learnt
–  Implement these changes as MVPs

14

Don't worry
about technical

debt

Unknown #2: Can you reach the
market?

•  How do you get your potential customers to
notice you or take you seriously?

•  Do you have to go through a reseller or other
intermediary?
– What are their pain points?

•  Use your market proxies
– Find out which journals they read, which

conferences they attend, which websites they
use, what they search for, their user groups, who
they listen to, how they buy, ...

15

Unknown #3: Is it feasible?

•  Do you have, or can you acquire, the
necessary resources, knowledge,
processes, to build your value proposition?

•  Test the high risk areas - in the field
– Measure runtime behaviour

•  Don't attempt to build a complete solution
– Use prototypes, experiments, etc

16

Measure what matters
Avoid "vanity" metrics

What matters
•  Customer benefit
•  Retention (or stickiness)
•  Speed of adoption

–  Of a feature or application
•  Success rate for completing

a task
–  And how long it takes

What probably doesn't
•  Metrics that don't teach you

anything
•  Or that can be the result of a

campaign
•  Examples

–  Unique visitors
–  Number of downloads
–  Sales growth

17

Measure your engine of growth
1.  Paid: old customers cover the cost of acquiring new

customers (eg dating business)
2.  Viral: word of mouth (eg facebook)
3.  Engagement or stickiness: (eg software leasing)

SQL Connect

18

Monitoring the right metrics

19

Google
Analytics

Check for
Updates

Application
Metrics

Mixpanel

Measuring runtime behaviour
(and avoiding an expensive release)

20

How quickly is the trace file
overwritten?

21

Actions the team took

•  Used ApplicationMetrics to measure the
actual time before the trace file were
overwritten
– Were amazed users got less than 10 minutes

•  Originally planned to use more trace files
– Which clearly wouldn't work

•  Instead the team chose to keep their own
record of database changes
– Which avoided an unnecessary release

22

Monitoring usage in the field

23

0%	

20%	

40%	

60%	

80%	

100%	

Start	
 Register	
 Open	
 or	

create	
 project	

Edit	
 (record	

sample,	
 apply	

effects,	
 ...)	

Play	
 sample	
 Set	
 visibility	
 Share	
 sample	

North	
 America	
 Japan	
 UK	
 Germany	

Israel	
 Rest	
 of	
 Europe	
 Rest	
 of	
 world	

First used
in week

First time
users

Percentage of users still using the product after:

1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks 7 weeks 8 weeks

47 5 60% 0% 20% 0% 0% 0% 0% 0%

48 4 50% 75% 0% 0% 0% 0% 0% 0%

49 8 75% 50% 25% 25% 13% 25% 0% 0%

50 12 42% 25% 8% 17% 8% 8% 0% 0%

51 15 53% 40% 20% 0% 0% 0% 0% 0%

52 48 63% 25% 21% 6% 2% 4% 2% 0%

53 42 83% 69% 62% 55% 29% 19% 0% 0%

01 45 80% 60% 44% 22% 18% 11% 9%

02 62 50% 37% 19% 8% 3% 0%

03 76 84% 75% 59% 47% 41%

04 69 75% 70% 57% 49%

05 149 60% 36% 20%

06 184 72% 47%

07 167 50%

08 156

Retention analysis for the
Demon Test Coverage tool

25

Task flow analysis

"Done Done"
ie the goals of the change have been achieved

•  ALM integration
•  Linking to a Kanban

•  Choose an appropriate
definition, eg
–  Feature is used at least

twice by 5 users

26

Tools for runtime analytics

27

ApplicationMetics

•  Our Runtime Analytics whitepaper
•  If you want to follow our progress or start

using ApplicationMetrics (for free)
– www.applicationmetrics.com

28

