
Nothing is Permanent except Change
QCon London 2012

1

© Prof. Dr. Michael Stal, 2012

“Nothing is Permanent except Change”
– How Software Architects can embrace Change

QCon 2012 London

Michael Stal

Mail: michael.stal@siemens.com

Twitter: @MichaelStal

Blog: http://stal.blogspot.com

Learning from failure

Failure and understanding
f il i k f t ffailure is a key factor for
successful design!

[Henry Petroski]

Page 2

Nothing is Permanent except Change
QCon London 2012

2

© Prof. Dr. Michael Stal, 2012

Last chance to escape!

Warning: This presentation is about
pragmatic software development projects pragmatic software development projects.
It only contains very few scientific
insights

Or as an unknown scientist called Einstein
once said: In theory, theory and practice
are the same. In practice, they are notare the same. In practice, they are not

But I will provide the first Perpetuum
Mobile Silver Bullet for optimizing
systems:

The Silver Bullet

Page 4

Nothing is Permanent except Change
QCon London 2012

3

© Prof. Dr. Michael Stal, 2012

One Side of the Coin: System & Software
Architecture Design

You could design the best
architecture if you knew
everything in advance – i.e., we
could anticipate change

In that case, the Waterfall model
would be a perfect fit

Unfortunately, the real world is not
perfect. It is changing in
unanticipated ways. That‘s
what we call evolution

But for sustainable software
architecture we need at least a
stable base, i.e. core design that
does only change rarely

Page 5

Can we balance both sustainable architecture
design and need for change?

Page 6

Nothing is Permanent except Change
QCon London 2012

4

© Prof. Dr. Michael Stal, 2012

Agenda

 A bit of architecture change

 Requirements Engineering and its impact on design Requirements Engineering and its impact on design
 Some other architecture viewpoints

 And now for something completely
different: testing

 More architecture issues I forgot to cover so far


 Premature refactoring

 But here the talk is over, maybe 

 Did I already mention change?

Page 7

Agenda

 A bit of architecture change

 Requirements Engineering and its impact on design Requirements Engineering and its impact on design
 Some other architecture viewpoints

 And now for something completely
different: testing

 More architecture issues I forgot to cover so far


 Premature refactoring

 But here the talk is over, maybe 

 Did I already mention change?

Page 8

Nothing is Permanent except Change
QCon London 2012

5

© Prof. Dr. Michael Stal, 2012

Change and Architecture?
- Two Ends of the Spectrum

Architecture design from day 1 in a
total agile approach

Architecture with Big Design Up
Front

Unstable architecture! Nice but either unsuitable or
overengineered architecture!

Page 9

Quo Vadis, Architect?

As designers we like to get the best
of both worlds:

 Is agile architecture a kind of
magic only gurus and wizards

? obtain a stable, sustainable core,

AND embrace change.

Can we achieve this objectives and,
if yes, how would we proceed?

can master?

Page 10

Yes,
we can!

Nothing is Permanent except Change
QCon London 2012

6

© Prof. Dr. Michael Stal, 2012

Let‘s dig deeper

Page 11

Process Models – Iterative-Incremental Model

The iterative incremental life cycle

evolutionary model

releases created as prototypes in an iterative
approach based on accurately defined rules

An iteration

a sequence of activities or tasks performed
within a period of time (4-8 weeks)

typically requirements analysis (at least
partially), design, implementation,
integration, testing (partially)

Iterative means re-do:
a rework scheduling strategy which
helps to improve the (quality of the) product

Incremental means add onto:

An increment is a

stable, executable and testable software
release

provides new functionality that moves the
product closer to its completion

Page 12

a staging and scheduling strategy which
helps to improve the process and
feature set by avoiding a big-bang
Integration

We should use both approaches together,
i.e. we use the benefits of both!!!

Nothing is Permanent except Change
QCon London 2012

7

© Prof. Dr. Michael Stal, 2012

Introducing a Change-Based Quality
Feedback Loop

Define and realize a software architecture using an iterative, risk-
driven, requirements-driven, and test-driven development process, in

hi hwhich

An iterative, time-boxed approach provides continuous feedback

Risk- and requirements orientation ensures that the most important aspects of
the system's realization are addressed first

A test-driven approach provides
concrete feedback on the quality
of the architecture and its realization

Page 13

The goal of each iteration is to produce
product quality and less risk, so that
the next iteration can be taken on safe ground

Why we should care about Architecture

If you think good
architecture is expensive,
try bad architecture

Page 14

[Brian Foote and Joseph Yoder]

Nothing is Permanent except Change
QCon London 2012

8

© Prof. Dr. Michael Stal, 2012

Architecture versus Design (according to Len
Bass)

“Design is a continuous activity of making
decisions beginning with a collection of
decisions that have broad system widedecisions that have broad system wide
scope and moving to a collection of
decisions that have very narrow scope

I would characterize a decision as
architectural if it has one or more of the
following properties:

it has system wide impact
it affects the achievement of a quality

tt ib t i t t t th t ”attribute important to the system”

Page 15

„Architecture is about the important
things“ [Martin Fowler]

„Architecture is about everything
costly to change“ [Grady Booch]

Strategic and Tactical Design

Strategic design focuses on global
system scope

At the beginning consider only strategic

Tactical Design encompasses all local
design decisions with non-systemic
impactAt the beginning consider only strategic

requirements, i.e., requirements with
systemic and strategic impact:

All functional requirements

All operational requirements

impact
Tactical requirements are requirements

with local scope such as
developmental requirements (e.g.,
modifiability)

Page 16

„Stable“ Strategy but Tactical Adaptations

Nothing is Permanent except Change
QCon London 2012

9

© Prof. Dr. Michael Stal, 2012

The Art of Architecture

There are two ways of
constructing a software
design: One way is to make
it so simple that there are
obviously no deficiencies,
and the other way is to
make it so complicated that
there are no obvious
d fi i i Th fi t

Page 17

deficiencies. The first
method is far more difficult

[C.A.R Hoare]

Some Advice from an Expert: Frederik P. Brooks

Design comprises three phases:

1. Formulation of conceptual constructsp

2. Implementation in real media

3. Interaction with real users

Iterative evolutionary design is essential

In the first months requirements engineering and architecture
design should go hand in hand, because

Whil hit t d ‘t f ll d t d th i tWhile architects don‘t fully understand the requirements,

customers don‘t fully understand the design

Write down all assumptions about users and their uses in the beginning

Learn from your predecessors

Maintain a sketch book with your ideas, concepts

Page 18

Nothing is Permanent except Change
QCon London 2012

10

© Prof. Dr. Michael Stal, 2012

An Architecture Process from 10000 feet that
addresses Change

Determine
Forces

Create
Architecture

Baseline

Refine & Assess
Architecture

Refactor
Architecture

Feedback LoopPreparation

Page 19

Complete
?

Executable
Architecture

yesnoExecutable
Increment

Piecemeal Growth

Architecture approach in detail

Perform
User Requirements

Elicitation

Create Domain
Model

Model dynamics of
scenarios

Determine Scope &
Boundaries

Page 20

Create first
conceptual draft

Structure the
Baseline

Architecture
Introduce

Deployment Views

Define
Principles &
Guidelines

Plan and Realize
Increments

Nothing is Permanent except Change
QCon London 2012

11

© Prof. Dr. Michael Stal, 2012

The Onion Model – Two Core Principles: Priority
Driven & Strategic before tactical design

Architecture design follows an onion model:
start with the inner core
incrementally continue with outer layersincrementally continue with outer layers

Functional Core
Distribution & Concurrency

Infrastructure

Strategic Qualities
Prio high … low

T ti l Q liti

Page 21

Tactical Qualities
Prio high … low

No Deep Dive - The Pyramid Model

How deep do we need to go?

Three levels of detail to limit depth

A focus on architecturally significant

System

Subsystem / Service

The baseline architecture must be as
complete as necessary to govern the
subsequent software development, but it
must also be as simple as possible,
otherwise it cannot be communicated

Page 22

requirements and corresponding
architecture views to limit breadth

Component

Nothing is Permanent except Change
QCon London 2012

12

© Prof. Dr. Michael Stal, 2012

Scenario-based Approaches
- Example: Design for Change

STIMU US

ARTIFACT:
System User Inter-
face platform RESPONSE

Page 23

SOURCE:
End User,
developer,
system admin

STIMULUS:
Wishes to
add/delete/
modify/vary
functionality,
quality attribute

face, platform,
environment

ENVIRONMENT:
@ runtime, compile
time,
build time, design
time

RESPONSE:
Locates Places
in Arch. To be
modified
(without affecting
other functionality)

Response
Measure:
Cost in
terms of
elements
affected

Design for Change

Modifiability
GOAL

Changeability

Localize
Changes

Prevention of
Ripple Effect

Defer
Binding Time

Tactics
to Control
Change

Changes
Arrive

• Semantic Coherence
• Anticipate Expected

Changes

• Hide Information
• Maintain Existing

Interface
• Restrict

Registration• Runtime Registration
• Configuration Files
• Polymorphism
• Component

Page 24

Changes Made,
Tested and
deployed within
time and
budget

Changes
• Generalize Module
• Limit Possible

Options
• Abstract Common

Services

s
• Restrict

Communication Paths
• Use an Intermediary

• Component
Replacement

• Adherence to
definded Protocols

BUT … MIND THE CAVEAT OF OVERDOING IT

Nothing is Permanent except Change
QCon London 2012

13

© Prof. Dr. Michael Stal, 2012

(Re-)Use is Essential

Human beings, who
are almost unique inare almost unique in
having the ability to
learn from the
experience of others,
are also remarkable
for their apparent

Page 25

disinclination to do
so.

[Douglas Adams. 1952-2001.
Last Chance to See]

Some Words about Dealing with Technology and
Hardware Changes

Use feasibilty prototypes for
technologies that are mission
critical

Especially to check for quality attributes

Use simulations if you are in a
system engineering / embedded
system context:

Simulate what is missing or difficult to
test otherwise

Do not only test at Q GatesDo not only test at Q Gates

Page 26

Nothing is Permanent except Change
QCon London 2012

14

© Prof. Dr. Michael Stal, 2012

An Architect’s Framework

The mindset, activities, practices, methods, and technologies for defining
and realizing software architectures form a best practice framework for

Specify and implement a software
architecture systematically and in a
timely fashion

Check and ensure the appropriate
architectural quality

Respond to changes of all
kinds such as changing

System and domain
scoping

Iterative, risk-driven,
Strategic and

Baseline architecture
specification

software architects to …

Page 27

kinds, such as changing
requirements and priorities

Deal with problems that arise
during the definition and realization
of the software architecture

requirements-driven, and
test-driven development

Strategic and
tactical design

Design for usability
Enforcing the

architecture vision

Panta rhei - Evolutionary Design embraces
Change

There is nothing
permanent except change

Page 28

[Heraclitus, 535–475 BC]

Nothing is Permanent except Change
QCon London 2012

15

© Prof. Dr. Michael Stal, 2012

Design erosion is the root of evil

A Backpack
Backpack

A
Backpack

Another

Detached Extensions

In the lifecycle of a software system
changes are the rule and not the
exception

A
Component

Someone
Else's Comp

Yet Another
C t

Another
Component

The Fifth
Element

Component
42

Backpack
exception

Unsystematic approaches
("workarounds") cure the symptom
but not the problem

After applying several workarounds,
software systems often suffer from

Page 29

DB
Access Layer

Component 42

Spaghetti
design

DB access
shortcut

software systems often suffer from
design erosion

Such systems are doomed to fail
(negative impact on operational &
developmental properties)

How do we know we must improve?

Lack of Internal or External Quality

Quality Attributes (use methods like
ATAM) andATAM), and,

Structural quality indicators which
include

Economy

Visibility

Spacing

Symmetry

Page 30

Symmetry

Emergence

Consequently, the goal of
architecture improvement is to
achieve or meet such qualities

Nothing is Permanent except Change
QCon London 2012

16

© Prof. Dr. Michael Stal, 2012

There is a strange Smell

Architecture smells
Duplicate design artifacts

If it stinks, there must be
something we need to clean up

Hammer&Nail syndrome
Unclear roles of entities
Inexpressive or complex

architecture
Everything centralized
Home-grown solutions instead of

best practices
Over-generic design
Asymmetric structure or behavior

g p

Page 31

Dependency cycles
Design violations (such as relaxed

instead of strict layering)
Inadequate partitioning of

functionality
Unnecessary dependencies

Example of Architecture Problem

*

Abstract
Storage

Transport
Way

* Abstract
StrategyA true story: In

*
g

Composite
Storage

BinDoorDump
Equip-
ment

y

*
Concrete
Strategy

gy

*

Cart Belt

A true story: In
this example
architects
introduced
Transport Way as
an additional
abstraction. But
can't we consider
transport ways as
just as another

Page 32

Concrete
Strategy

*

Abstract
Storage

Composite
Storage

BinDoorDump

Abstract
Strategy

Equipment

*

kind of storage?
As a consequence
the unnecessary
abstraction was
removed, leading
to a simpler and
cleaner design.

Nothing is Permanent except Change
QCon London 2012

17

© Prof. Dr. Michael Stal, 2012

Possible Refactoring Pattern

Context
Eliminating unnecessary design abstractions g y g

Problem
Minimalism is an important goal of software architecture, because

minimalism increases simplicity and expressiveness
If the software architecture comprises abstractions that could also be

considered abstractions derived from other abstractions, then better
remove these abstractions

General solution idea
Determine whether abstractions / design artifacts exist that could also be

Page 33

derived from other abstractions
If this is the case, remove superfluous abstractions and derive from

existing abstractions instead
Caveat

Don't generalize too much (such as introducing one single hierarchy
level: "All classes are directly derived from Object")

Yet another example

GetState()

SetState {

GetState()

SetState {Monitors need to

Agent

SetState {

...M.GetTimeStam
p()

}

X Break
Cycle

Agent

SetState {

...

T.GetTimeStamp(
)

}

TIME

GetTimeStamp()

Monitors need to
access agents to
control the
network

Agents change
their internal state
and create events

To have a common
clock architects
decided to

Page 34

Monitor

GetTimeStamp()

Draw() {

...
A.GetState();

}

Monitor

Draw() {

...
A.GetState();

}

decided to
enhance the
monitor

… which leads to
a cycle

Nothing is Permanent except Change
QCon London 2012

18

© Prof. Dr. Michael Stal, 2012

Yet Another Refactoring Pattern

Context

Cyclic dependencies between subsystemsCyclic dependencies between subsystems

Problem

System reveals at least one dependency cycle between subsystems

Subsystem A may either depend directly or indirectly on subsystem B
(e.g., A depends on C which depends on B) which is why we always
need
to consider the transitive hull

Dependency cycles make systems less maintainable changeable

Page 35

Dependency cycles make systems less maintainable, changeable,
reusable, testable, understandable

General solution idea

Get rid of the dependency cycle by removing or inverting dependencies

Change needs Refactoring

Refactoring is integrated into
the architecture design
process:

It improves the structure

It t i k

Refine & Review
Architecture

Refactor
Architecture

Feedback Loop

Page 36

It supports a risk-,
requirements- and test-
driven approach

Complete
?

yesnoExecutable
Increment

Nothing is Permanent except Change
QCon London 2012

19

© Prof. Dr. Michael Stal, 2012

After refactoring check for correctness

To check the correctness of refactorings,
we should use a test-driven approach.pp

Available options:

Formal approach: Prove semantics and
correctness of program transformation

Implementation approach: Leverage unit
and regression tests to verify that the
resulting implementation still meets the
specification

Page 37

Architecture analysis: Check the
resulting software architecture for its
equivalence with the initial architecture
(consider requirements)

Use at least the latter two methods to
ensure quality

Frequently discussed Obstacles to Refactoring

Organization / management
Featuritis: Considering improvement by

refactoring as less important than g p
features

“Organization drives architecture” problem
Process support

No refactoring activities defined in process
Refactorings not checked for correctness,

test manager not involved
Technologies and tools

Unavailability of tools: refactoring must be

Page 38

y g
done manually

Unavailability of refactoring catalog
Applicability

Refactoring used instead of reengineering
Wrong order of refactorings

Nothing is Permanent except Change
QCon London 2012

20

© Prof. Dr. Michael Stal, 2012

Reengineering – when and how to use it

Use Reengineering when

The system's documentation

Process
Phase I: Reverse engineering

Reverse Forward

The system s documentation
is missing or obsolete

The team has only limited
understanding of the
system, its architecture, and
implementation

A bug fix in one place causes
bugs in other places

g g
Analysis / recovery: determine

existing architecture (consider
using CQM)

SWOT analysis
Decisions: what to keep, what

to change or throw away
Phase II: Forward engineering

Page 39

engineering engineering

Code

Design
Pick

W orkpiece

Log
Alarms

Telegram
Forwarder

Telegram
Receiver

Telegram
Converter

SetPoint
Calculation

Command

Logging
Strategy

Command
Processor

Logger

The network

creates

executes

applies passes
commands to

passes telegrams to
passes telegrams to

Conference
Organizer

uses
Conference

Manager

Conference
Participant

Conference

Conference
Session

organizes

manages

Scheduler

uses

has*

*

Documents

uses
Media

Manager

*

participates

Requirements

bugs in other places

New system-level
requirements and functions
cannot be addressed or
integrated appropriately

Rewriting in a Nutshell

Rewriting is a radical and fresh restart: existing design and code is
trashed and replaced by a whole new design and implementation.
Depending on focus:Depending on focus:

Improves structure regarding:

Simplicity, visibility, spacing, symmetry,
emergence

Maintainability, readability, extensibility

Bug fixing

Provides new functionality

Improves its operational qualities

Page 40

Improves its operational qualities

Improves design and code stability

As a consequence, rewriting addresses all
types of software quality: functional,
operational, and the various developmental
qualities

Nothing is Permanent except Change
QCon London 2012

21

© Prof. Dr. Michael Stal, 2012

Refactoring, reengineering, and rewriting comparison (1)

Refactoring, reengineering, and rewriting are complementary approaches
to sustain architecture and code quality

Start with refactoring – it is cheap and (mostly) under the radar
Consider reengineering when refactoring does not help – but it is expensive
Consider rewriting when reengineering does not help – but it is expensive

and often risky

Reverse
engineering

Forward
engineering

Requirements

Logging
Strategy

Concrete
Logging
Strategy

Client
Command
Processor

Strategy
Command
Processor

Page 41

Code

Design
Pick

Workpiece

Log
Alarms

Telegram
Forwarder

Telegram
Receiver

Telegram
Converter

SetPoint
Calculation

Command

Logging
Strategy

Command
Processor

Logger

The network

creates

executes

applies passes
commands to

passes telegrams topasses telegrams to

Conference
Organizer

uses
Conference

Manager

Conference
Participant

Conference

Conference
Session

organizes
manages

Scheduler
uses

has*

*

Documents

usesMedia
Manager

*

participates

q

*

Strategy

Concrete
Command

Command

Composite
Command

Memento

Application

Memento

Command &
Composite

Refactoring, reengineering, and rewriting comparison (2)

Refactoring Reengineering Rewriting

Scope  Many local effects  Systemic effect  Systemic or local effect

Process  Structure transforming

 Behavior / semantics

 Disassembly / reassambly  Replacement

preserving

Results  Improved structure

 Identical behavior

 New system  New system or new
component

Improved
qualities

 Developmental (might
change Operational
Quality)

 Functional

 Operational

 Developmental

 Functional

 Operational

 Developmental

Drivers  Complicated design /
code evolution

 When fixing bugs

 When design and code

 Refactoring is insufficient

 Bug fixes cause rippling
effect

 New functional and

 Refactoring and
reengineering are insufficient
or inappropriate

 Unstable code and design

Page 42Page 42

 When design and code
smell bad

 New functional and
operational requirements

 Changed business case

Unstable code and design

 New functional and
operational requirements

 Changed business case

When

 Part of daily work

 At the end of each
iteration

 Dedicated refactoring
iterations in response to
reviews

 It is the 3rd step of TDD

 Requires a dedicated project  Requires dedicated effort or
a dedicated project,
depending on scope

Nothing is Permanent except Change
QCon London 2012

22

© Prof. Dr. Michael Stal, 2012

Mind your Architecture Governance

Without Architecture
Governance theGovernance the
System is subject to
uncontrolled Change
and Extension

Introduce countermeasures, e.g.,:
Architecture Guidelines and Policies as

well as their Enforcement

Software Software ArchitectureArchitecture

well as their Enforcement
Means to ensure Requirements

Traceability
No Checking-in without other Persons

reviewing Code and Documents
Test-Driven-Design
Risk-Based Analysis & Test

Page 43

Software Architect’s Dilemma

Life must be understood
backwards; but it mustbackwards; but ... it must
be lived forward

[Søren Aabye Kierkegaard, Danish
philosopher and theologian, 1813-1855]

Page 44

Nothing is Permanent except Change
QCon London 2012

23

© Prof. Dr. Michael Stal, 2012

Reviews help finding the Bad Smells

Quantitative Architecture Reviews

Code quality assessment

Simulations

Prototypes

Qualitative Architecture Reviews

Scenario-based approaches

Experience-based approaches

A A hit t A t R i h ld

Page 45

An Architecture Assessment or Review should
not be considered an afterthought.

It is a means to check a system regularly and
find problems early

In many projects the responsibility for
internal code and design quality is not well
d fi d

Visualization Tools help keeping the system in
good Shape

defined

The software architect has to ensure that
the required CQM activities are established

The software architect should be the
protector of the quality of the software
system!

Page 46

Use Visualization Tools at least in larger
code bases By the way:

this is a real
system

Nothing is Permanent except Change
QCon London 2012

24

© Prof. Dr. Michael Stal, 2012

“Preventive Maintenance”

Experts solve
problems, geniuses
avoid them

[Albert Einstein]

Page 47

Architecture Quality is also influenced by other
aspects

Involvement of Software
Architects in different

phases and disciplines

Business
& Strategy

Requirement
s

Engineering

Test &
Quality

Rollout &
Maintenance

phases and disciplines

Page 48

Engineering

Design Integration &
Implementatio

n

Nothing is Permanent except Change
QCon London 2012

25

© Prof. Dr. Michael Stal, 2012

Architects & Requirements – Problem 1:
Understanding the Requirements

Page 49

Architects & Requirements – Problem 2:
Implementing the Requirements

A program which
perfectly meets aperfectly meets a
lousy specification is
a lousy program

[Cem Kaner, Software Engineering
Professor and Consumer
Advocate]]

Page 50

Nothing is Permanent except Change
QCon London 2012

26

© Prof. Dr. Michael Stal, 2012

Problem 3: Sources of Requirements

The system should
be faster than light

The system should
ff i t f

The system needs
to support
timezones

Did I tell
be faster than light

The system should be
cheap AND offer 24 x 7

offer an interfacethem we
have only
4 weeks

Page 51

=> Requirements must have high Quality

Quality of Requirements determines Quality of Software Architecture

Cohesive

Complete

Consistent

Correct

Current

Externally Observable

Feasible

Unambiguous

Mandatory

Verifiable

Upon frequent change, quality of requirements is essential!
Page 52

Nothing is Permanent except Change
QCon London 2012

27

© Prof. Dr. Michael Stal, 2012

No Risk – No Fun?

The most likely way for the world to be
destroyed, most experts agree, is bydestroyed, most experts agree, is by
accident. That's where we come in;
we're computer professionals. We
cause accidents

Nathaniel Borenstein, US Programmer

Needless to say, ad-hoc changes
imply higher accidental complexity

Page 53

Mind all Risks and conduct a Risk Analysis early

Approach for risk analysis according to Christine
Hofmeister (“Applied Software Architecture”):

Description of risk: e.g., dependence on
persistence layer

Influential factors that lead to this risk: e.g.,
requirement to decouple business from
persistence layer, not enough technology skills
in team

Solution approach: e.g., introduce data access
layerlayer

Possible strategies: e.g., give subproject to
external company, use open source solution,
use platform-specific solution

Related topics and strategies: e.g., decoupling
business logic from other backend layers

Page 54

Nothing is Permanent except Change
QCon London 2012

28

© Prof. Dr. Michael Stal, 2012

Knowing the expectations is essential

At least at project begin,

Architects don‘t understand
requirements very well

Customers tell what they want,
not what they need

Architects may even not know
the implicit requirements

Hence,

Keep in touch with CustomersKeep in touch with Customers

Apply a KANO Analysis

Understand your Business
Goals

Develop Design and
Requirements in parallel

Page 55

Testing as a never ending story

Testing is an infinite process of
comparing the invisible to thecomparing the invisible to the
ambiguous in order to avoid
the unthinkable happening to
the anonymous

[James Bach, Test Guru]

Page 56

Nothing is Permanent except Change
QCon London 2012

29

© Prof. Dr. Michael Stal, 2012

Testing is about Safety Nets not about Control

Observation (Peter Zimmerer):
Software products are
never released – they escape!

Consequence: Mind the testing
necessities during architecture
design:

Test Driven Design

Test Exit Criteria

Code Quality Management

Appropriate Test MethodsAppropriate Test Methods

Risk-Based Test Strategies are a
good approach

Page 57

Risk Based Test Strategy

 Evaluate risks:
What is the risk

Which part of the system does it
affect

How likely is the risk

How big is the possible damage

What priority does the risk have

Can it be tested? If yes, when and
using what method

C h b dCan the test be automated

Which resources (budget, time, ---)
are required

Nothing is Permanent except Change
QCon London 2012

30

© Prof. Dr. Michael Stal, 2012

Visibility / observability

What you see is what you test

Design for testability – Practical definition

Ability to observe the outputs, states, internals,
resource usage, and other side effects of the
software under test

Interaction with the system under test through
observation points

Control(lability)

Page 59

The better we can control the software, the more testing
can be automated and optimized

Ability to apply inputs to the software under test or place
it in specified states (for example reset to start state)

Interaction with the system under test through control
points

Communication is essential

Software Development is a
collaborative gamecollaborative game

[Alistair Cockburn]

Page 60

Nothing is Permanent except Change
QCon London 2012

31

© Prof. Dr. Michael Stal, 2012

Change-based Design requires Effective Agile
Communication

Leadership, and communication and interaction with other roles in software
development, are probably the most time-intensive and most important
responsibilities of a Software Architect

Product line

manager

Software

Requirements
engineer

Head of
R&D

The roles with whom the
architect interacts,

the topics about which they
interact with these roles,

and the intensity of the

?

Page 61

project

manager

Software
architect

Test
manager

Software developer

and the intensity of the
interaction

depend on the concrete
development workflow and
activity performed in a
software project

Conclusions

Architecture Change should be considered
in the whole lifecycle, not only at the
end - it is a crosscutting concern.

The Development and the Architecture Design
Process must support change

There must be a balance between change and
architectural stability

Piecemeal Growth needs to be combined with
Architecture Assessment

Test Driven Design introduces Safety Nets

Change requires Agile Communication

This is what Agile Architecture is about

Page 62

Nothing is Permanent except Change
QCon London 2012

32

© Prof. Dr. Michael Stal, 2012

A departing thought

Each problem that I solved
became a rule which served
afterwards to solve other
problems.

[René Descartes, 1596–1650, in "Discours

Page 63

[René Descartes, 1596 1650, in Discours
de la Methode"]

