
Simple Made Easy
Rich Hickey



Simplicity is prerequisite for 
reliability

Edsger W. Dijkstra



Word Origins
Simple
sim- plex

one fold/braid

vs complex

Easy
ease < aise < adjacens

lie near

vs hard



Simple
One fold/braid

One role

One task

One concept

One dimension

But not

One instance

One operation

About lack of 
interleaving, not 
cardinality
Objective



Easy
Near, at hand

on our hard drive, in 
our tool set, IDE, apt 
get, gem install...

Near to our 
understanding/skill set

familiar

Near our capabilities

Easy is relative



Construct vs Artifact
We focus on experience of use of construct

programmer convenience

programmer replaceability

Rather than the long term results of use

software quality, correctness

maintenance, change

We must assess constructs by their artifacts



We can only hope to 
make reliable those things 
we can understand

We can only consider a 
few things at a time

Intertwined things must be 
considered together

Complexity undermines 
understanding

Limits



Change

Changes to software require analysis and decisions

What will be impacted?

Where do changes need to be made?

Your ability to reason about your program is critical to 
changing it without fear

Not talking about proof, just informal reasoning



Debugging
What’s true of every bug 
found in the field?

It has passed the type 
checker

and all the tests

Your ability to reason 
about your program is 
critical to debugging



Development Speed
Emphasizing ease gives 
early speed

Ignoring complexity will 
slow you down over the 
long haul

On throwaway or trivial 
projects, nothing much 
matters

Sp
ee

d

Time

Easy Simple



Easy Yet Complex?

Many complicating constructs are

Succinctly described

Familiar

Available

Easy to use

What matters is the complexity they yield

Any such complexity is incidental



Benefits of Simplicity

Ease understanding

Ease of change

Easier debugging

Flexibility

policy

location etc



Making Things Easy

Bring to hand by installing

getting approved for use

Become familiar by learning, trying

But mental capability?

not going to move very far

make things near by simplifying them



Parens are Hard!
Not at hand for most

Nor familiar

But are they simple?

Not in CL/Scheme

overloaded for calls 
and grouping

Adding a data structure 
for grouping, e.g. 
vectors, makes each 
simpler

overloading is 
complexity reduced by 
adding more things



LISP programmers know the value of 
everything and the cost of nothing.

Alan Perlis



What’s in your Toolkit?
Complexity Simplicity

State, Objects Values
Methods Functions, Namespaces
variables Managed refs

Inheritance, switch, matching Polymorphism a la carte
Syntax Data

Imperative loops, fold Set functions
Actors Queues
ORM Declarative data manipulation

Conditionals Rules
Inconsistency Consistency



Complect

To interleave, entwine, braid

archaic

Don’t do it!

Complecting things is the 
source of complexity

Best to avoid in the first place



Compose

To place together

Composing simple components 
is the key to robust software



Modularity and Simplicity



Modularity and Simplicity



Modularity and Simplicity

Partitioning and stratification don't imply simplicity

but are enabled by it

Don’t be fooled by code organization



State is Never Simple

Complects value and time

It is easy, in the at-hand and familiar senses

Interweaves everything that touches it, directly or 
indirectly

Not mitigated by modules, encapsulation

Note - this has nothing to do with asynchrony



Not all refs/vars are Equal

None make state simple

All warn of state, help reduce it

Clojure and Haskell refs compose value and time

Allow you to extract a simple value

Provide abstractions of time

Does your var do that?



The Complexity Toolkit
Construct Complects

State Everything that touches it
Objects State, identity, value, ops ...
Methods Function and state, namespaces
Syntax Meaning, order

Inheritance Types
Switch/matching Multiple who/what pairs

var(iable)s Value, time
Imperative loops, fold what/how

Actors what/who
ORM OMG

Conditionals Why, rest of program



The Simplicity Toolkit
Construct Get it via...

Values final, persistent collections
Functions a.k.a. stateless methods

Namespaces language support
Data Maps, arrays, sets, XML, JSON etc

Polymorphism a la carte Protocols, type classes
Managed refs Clojure/Haskell refs
Set functions Libraries

Queues Libraries
Declarative data manipulation SQL/LINQ/Datalog

Rules Libraries, Prolog
Consistency Transactions, values



Environmental Complexity
Resources, e.g. memory, CPU

Inherent complexity in implementation space

All components contend for them

Segmentation

waste

Individual policies don’t compose

just make things more complex



Abstraction for Simplicity

Abstract

drawn away

vs Abstraction as complexity hiding

I don’t know, I don’t want to know



Simplicity is not an objective in 
art, but one achieves simplicity 
despite one's self by entering 
into the real sense of things

Constantin Brancusi



Lists and Order

A sequence of things

Does order matter?
[first-thing second-thing third-thing ...]

[depth width height]

set[x y z]

order clearly doesn’t matter



Why Care about Order?

Complects each thing with the next

Infects usage points

Inhibits change

[name email] -> [name phone email]



Order in the Wild
Complex Simple

Positional arguments Named arguments or map

Syntax Data

Product types Associative records

Imperative programs Declarative programs

Prolog Datalog

Call chains Queues

XML JSON, Clojure literals

...



Maps, Dammit!

First class associative data structures

Idiomatic support

literals, accessors, symbolic keys...

Generic manipulation

Get ‘em, or get out



Information is Simple

Don’t ruin it

By hiding it behind a micro-language

i.e. a class with information-specific methods

thwarts generic data composition

ties logic to representation du jour

Represent data as data



Encapsulation

Is for implementation details

Information doesn’t have implementation

Unless you added it - why?

Information will have representation

have to pick one



Wrapping Information
The information class:
IPersonInfo{

getName(); 

... other awfulness ...}

A service based upon it:
IService{

doSomethingUseful(IPersonInfo); ...}



Can You Move It?

Litmus test - can you move your subsystems?

out of proc, different language, different thread?

Without changing much

Not seeking transparency here



Subsystems Must Have

Well-defined boundaries

Abstracted operational interface (verbs)

General error handling

Take/return data

IPersonInfo - oops!

not just a matter of serializers



Simplicity is a Choice

Requires vigilance, sensibilities and care

Your sensibilities equating simplicity with ease and 
familiarity are wrong

Develop sensibilities around entanglement

Your 'reliability' tools (testing, refactoring, type systems) 
don't care if simple or not

and are peripheral to producing simple software



Simplicity Made Easy

Choose simple constructs over complexity-generating 
constructs

It’s the artifacts, not the authoring

Create abstractions with simplicity as a basis

Simplify the problem space before you start

Simplicity often means making more things, not fewer



Simplicity is the ultimate 
sophistication. 

Leonardo da Vinci


