

<Insert Picture Here>

To Java SE 8, and Beyond!
Simon Ritter
Technology Evangelist

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

89
2020? 2012

Priorities for the Java Platforms

Grow Developer Base

Grow Adoption

Increase Competitiveness

Adapt to change

6 6

Evolving the Language
From “Evolving the Java Language” - JavaOne 2005
•  Java language principles
–  Reading is more important than writing
–  Code should be a joy to read
–  The language should not hide what is happening
–  Code should do what it seems to do
–  Simplicity matters
–  Every “good” feature adds more “bad” weight
–  Sometimes it is best to leave things out

•  One language: with the same meaning everywhere
•  No dialects

•  We will evolve the Java language
•  But cautiously, with a long term view
•  “first do no harm” also “Growing a Language” - Guy Steele 1999

 “The Feel of Java” - James Gosling 1997

How Java Evolves and Adapts
Of the community, by the community, for the community

JSR-348: JCP.next

JCP Reforms

•  Developers’ voice in the Executive Committee
•  SOUJava
•  Goldman Sachs
•  London JavaCommunity

•  JCP starting a program of reform
•  JSR 348: Towards a new version of the JCP

9 9

Java SE 7 Release Contents

•  Java Language
•  Project Coin (JSR-334)

•  Class Libraries
•  NIO2 (JSR-203)
•  Fork-Join framework, ParallelArray (JSR-166y)

•  Java Virtual Machine
•  The DaVinci Machine project (JSR-292)
•  InvokeDynamic bytecode

•  Miscellaneous things
•  JSR-336: Java SE 7 Release Contents

10 10

JVM Convergence

11 11

The (Performance) Free Lunch Is Over

Image courtesy of Herb Sutter

SPARC T1 (2005)	
8 x 4 = 32	

SPARC T2 (2007)	
8 x 8 = 64	

SPARC T3 (2011)!
16 x 8 = 128	

13 13

Multi-core Clients

2002 2004 2006 2008 2010

2 ... 4 8

Phone ... Tablet ... Desktop

2012

14 14

Big Disclaimer

The syntax used in the
following slides may

change

Caveat emptor

class Student {
 String name;
 int gradYear;
 double score;
}

Collection<Student> students = ...;

Collection<Student> students = ...;

double max = Double.MIN_VALUE;

for (Student s : students) {
 if (s.gradYear == 2011)
 max = Math.max(max, s.score);
}

Collection<Student> students = ...;

double max = Double.MIN_VALUE;

for (Student s : students) {
 if (s.gradYear == 2011)
 max = Math.max(max, s.score);
}

Collection<Student> students = ...;

max = students.filter(new Predicate<Student>() {
 public boolean op(Student s) {
 return s.gradYear == 2011;
 }
 }).map(new Extractor<Student, Double>() {
 public Double extract(Student s) {
 return s.score;
 }
 }).reduce(0.0, new Reducer<Double, Double>() {
 public Double reduce(Double max, Double score) {
 return Math.max(max, score);
 }
 });

Inner Classes Are Imperfect Closures

•  Bulky syntax
•  Unable to capture non-final local variables
•  Transparency issues

•  Meaning of return, break, continue, this

•  No non-local control flow operators

Single Abstract Method (SAM) Types

•  Lots of examples in the Java APIs
• Runnable, Callable, EventHandler, Comparator

•  Noise:Work ratio is 5:1
•  Lambda expressions grow out of the idea of making

callback objects easier

foo.doSomething(new CallbackHandler() {
 public void callback(Context c) {
 System.out.println(c.v());
 }
});

Collection<Student> students = ...;

max = students.filter((Student s) -> s.gradYear == 2011)
 .map((Student s) -> s.score)
 .reduce(0.0,
 (Double max, Double score) ->
 Math.max(max, score));

max = students.filter(s -> s.gradYear == 2011)
 .map(s -> s.score)
 .reduce(0.0, Math#max);

max = students.parallel()
 .filter(s -> s.gradYear == 2011)
 .map(s -> s.score)
 .reduce(0.0, Math#max);

22 22

Lambda Expression Examples

(Context c) -> System.out.println(c.v());

c -> System.out.println(c.v()); // Inferred

int x -> x + 1

Target Types

•  Rule #1: Only in a context where it can be converted
to a SAM type

CallBackHandler cb =
 (Context c) -> System.out.println(c.v());

x -> x + 1;

Runnable r = () -> System.out.println("Running”);
executor.submit(() -> System.out.println("Running”));

Object o = () -> 42; // Illegal, not a SAM type

Lambda Bodies

•  Rule #2: A list of statements just like in a method
body, except no break or continue at the top level.
The return type is inferred from the unification of the
returns from the set of return statements

•  Rule #3: ‘this’ has the same value as ‘this’
immediately outside the Lambda expression

•  Rule #4: Lambdas can use‘effectively final’ variables
as well as final variables (compiler inferred)

Collection<Student> students = ...;

double max = // Lambda expressions
 students.filter(Students s -> s.gradYear == 2010})
 .map(Students s -> s.score })
 .reduce(0.0, Math#max);

 interface Collection<T> {
 int add(T t);
 int size();
 void clear();
 ...
}

How to extend an interface in Java SE 8

public interface Set<T> extends Collection<T>
{

 public int size();

 ... // The rest of the existing Set methods

 public extension T reduce(Reducer<T> r)
 default Collections.<T>setReducer;
}

tells us this
method

extends the
interface

Implementation to use if none exists
for the implementing class

Collection<Student> students = ...;

double max = // Lambda expressions
 students.filter(Students s -> s.gradYear == 2010)
 .map(Students s -> s.score)
 . reduce(0.0, Math#max);

interface Collection<T> { // Default methods
 extension Collection<E> filter(Predicate<T> p)
 default Collections.<T>filter;

 extension <V> Collection<V> map(Extractor<T,V> e)
 default Collections.<T>map;

 extension <V> V reduce()
 default Collections.<V>reduce;
}

$ java org.planetjdk.aggregator.Main

$ java -cp $APPHOME/lib/jdom-1.0.jar:
$APPHOME/lib/jaxen-1.0.jar:
$APPHOME/lib/saxpath-1.0.jar:
$APPHOME/lib/rome.jar-1.0.jar:
$APPHOME/lib/rome-fetcher-1.0.jar:
$APPHOME/lib/joda-time-1.6.jar:
$APPHOME/lib/tagsoup-1.2.jar:
org.planetjdk.aggregator.Main

$ java -cp $APPHOME/lib/jdom-1.0.jar:
$APPHOME/lib/jaxen-1.0.jar:
$APPHOME/lib/saxpath-1.0.jar:
$APPHOME/lib/rome.jar-1.0.jar:
$APPHOME/lib/rome-fetcher-1.0.jar:
$APPHOME/lib/joda-time-1.6.jar:
$APPHOME/lib/tagsoup-1.2.jar:
org.planetjdk.aggregator.Main

module org.planetjdk.aggregator @ 1.0 {
 requires jdom @ 1.0;
 requires tagsoup @ 1.2;
 requires rome @ 1.0;
 requires rome-fetcher @ 1.0;
 requires joda-time @ 1.6;
 requires jaxp @ 1.4.4;
 class org.openjdk.aggregator.Main;
}

module-info.java

jdom-1.0

jaxen-1.0

saxpath-1.0 rome-1.0

joda-time-1.6

tagsoup-1.2
jaxp-1.4.4

org.planetjdk.aggregator

rome-fetcher-1.0

classpath

deb

rpm

jar

jmod

mvn

// module-info.java

module org.planetjdk.aggregator @ 1.0 {
 requires jdom @ 1.0;
 requires tagsoup @ 1.2;
 requires rome @ 1.0;
 requires rome-fetcher @ 1.0;
 requires joda-time @ 1.6;
 requires jaxp @ 1.4.4;
 class org.openjdk.aggregator.Main;
}

classpath

http://www.flickr.com/photos/thatguyfromcchs08/2300190277	
http://www.flickr.com/photos/viagallery/2290654438	

Java SE Profiles and Modules

•  Rules for creating modules of the Java SE platform
•  Java SE base profile
•  Java SE base module
•  Component modules for separable technologies

JDK 8 – Proposed Content
Theme Description/Content
Project Jigsaw •  Module system for Java applications and for the Java platform

Project Lambda
•  Closures and related features in the Java language (JSR 335)
•  Bulk parallel operations in Java collections APIs (filter/map/

reduce)

Oracle JVM
Convergence

•  Complete migration of performance and serviceability features
from JRockit, including Mission Control and the Flight Recorder

JavaFX 3.0 •  Next generation Java client, Multi-touch

JavaScript •  Next-gen JavaScript-on-JVM engine (Project Nashorn)
•  JavaScript/Java interoperability on JVM

Device Support •  Camera, Location, Compass and Accelerometer

Developer
Productivity •  Annotations onTypes (JSR 308), Minor language enhancements

API and Other
Updates

•  Enhancements to Security, Date/Time (JSR 310), Networking,
Internationalization, Accessibility, Packaging/Installation

Additional Disclaimers

•  Some ideas for the Java Platform are shown on the
following slides

•  Large R&D effort required
•  Content and timing highly speculative
•  Some things will turn out to be bad ideas
•  New ideas will be added
•  Still, Java’s future is bright (in our humble opinion)!

Java SE 9 (and beyond…)

Interoperability • Multi-language JVM
• Improved Java/Native integration

Cloud • Multi-tenancy support
• Resource management

Ease of Use • Self-tuning JVM
• Language enhancements

Advanced
Optimizations

• Unified type system
• Data structure optimizations

Works Everywhere
and with Everything

• Scale down to embedded, up to massive servers
• Support for heterogenuous compute models

Vision: Interoperability

•  Improved support for non-Java languages
•  Invokedynamic (done)
•  Java/JavaScript interop (in progress – JDK 8)
•  Meta-object protocol (JDK 9)
•  Long list of JVM optimizations (JDK 9+)

•  Java/Native
•  Calls between Java and Native without JNI boilerplate (JDK 9)

Vision: Cloud

•  Multi-tenancy (JDK 8+)
•  Improved sharing between JVMs in same OS
•  Per-thread/threadgroup resource tracking/management

•  Hypervisor aware JVM (JDK 9+)
•  Co-operative memory page sharing
•  Co-operative lifecycle, migration

Vision: Language Features

•  Large data support (JDK 9)
•  Large arrays (64 bit support)

•  Unified type system (JDK 10+)
•  No more primitives, make everything objects

•  Other type reification (JDK 10+)
•  True generics
•  Function types

•  Data structure optimizations (JDK 10+)
•  Structs, multi-dimensional arrays, etc
•  Close last(?) performance gap to low-level languages

Vision: Integration

•  Modern device support (JDK 8+)
•  Multitouch (JDK 8)
•  Location (JDK 8)
•  Sensors – compass, accelerometer, temperature, pressure, ...

(JDK 8+)

•  Heterogenous compute models (JDK 9+)
•  Java language support for GPU, FPGA, offload engines,

remote PL/SQL...

The Path Forward

•  Open development
•  Prototyping and R&D in OpenJDK
•  Cooperate with partners, academia, greater community

•  Work on next JDK, future features in parallel
•  2-year cycle for Java SE releases

Java SE 2012 to Java 12

2011 2015 2019 2014

JDK 7

2013 2021

JDK 12

2017

JDK 8 JDK 9 JDK 10 JDK 11

2012

JVM convergence

Mac OS X

Conclusions

•  The Java platform will continue to evolve
•  Java SE 8 will add some nice, big features
•  Expect to see more in Java SE 9 and beyond
•  Java is not the new Cobol

Further Information

•  Project Lambda
•  openjdk.java.net/projects/lambda

•  Project Jigsaw
•  openjdk.java.net/projects/jigsaw

