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= Disclaimers

= In 30 years, we've learned a lot
(a grizzled veteran)

= But, we don’t know everything ...
= ... we could be wrong !
= My other computer is a Mac

= We have “shipped” ...
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Background (S

Extensive
background in
real-time process

monitoring
La rge volumes of Connecticut Valley Power Critical Tax Season
dynamic data Grid Management System Applications at Intuit
Central Monitoring & Control Apr 17, 2008 11:53:07
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Visualization
technologies
Mission-critical
applications
: 0OCL World Wide NASA Space Shuttle
Shipment Tracking Launch Control System
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Here to talk about Scalability and Performance

Problem Space:

Collection, Analysis, and Visualization in Real-Time
of large volumes of monitoring data from large-
scale, complex, distributed applications

Emphasis: Real-Time, Large Volumes of Data
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Challenges (S

= Challenge #1:

Database Performance

Common to see queries taking minutes
How can you get real-time that way ?




Challenges (S

= Challenge #2:

Network Data-Transfer Bandwidth

Bigger pipes, but there’s more data to send
How do you get the greatest throughput ?




Challenges (S

= Challenge #3:

Processor Performance

More cores just means more processes !
How do you optimize your utilization ?




Challenges (S

= Challenge #4:
Lack of Real-Time Predictability

Virtualization is the new time-share !
How can you trust your data ?

/77 1

"time-sharing”, "network computer”, “cloud”, do
things ever really change ?
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Solution - Clues ?

Facts of Life:

Database - can’t live with it, can’t live without it
Network - it's a funnel, no way around it
Processor — must limit what you ask it to do

Virtualization - it's erratic, have to compensate

SR




Solutions (S

= Solution #1:

Proper Data Model

Data structures designed for real-time
In-memory structures to buffer database




Can your application be ...




What is most important part of racecar ?
(besides the engine)




Not a simple High-performance
“current value” Real-time Multi-dimensional
cache Data Cache




Real-Time Cache — optimized for performance !

Current / History Tables:

Indexed Insertion - Indexed extraction -
asynchronous real-time data optimized transfer to clients
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Real-Time Cache — Data Processing / Aggregation
Detail
Views
B (u);
Summary
Views

Reduction,
Resolution, Aging Aggregation




Real-Time Cache — Database read/write through
(optimized for timestamped multi-dimensional data)
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Real-Time data
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written to DB
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This sounds a bit like Oracle Coherence ...

Caching in an SOA Environment

i Composite
Applications
4 N
Business
Process ’{’ :€_ e i - '{‘
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Data
Services

Database Mainframe Web Service

Buffer database
Read/write through
Listeners

Indexed queries

What’s different ?




Multi-Tier Visibility into Monitoring Data (8¢

Caching in an SOA Environment Unified Real-time display of data
from all Application tiers

[ Composite
Applications
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Different tools for different problems !

Real-Time Multi-dimensional data:

Current / History Tables:
Multiple rows (time range) of

selected columns returned in one
query

‘ Coherence cache distributes objects
(rows) = optimized horizontally

Real-Time multi-dimensional cache
manages columns and optimizes
coe vertically

AR AN -



Benefits: Indexed Real-Time Caching

Slow SQL queries minimized

Users shielded from database details

Minimize CPU load using effective indexing




Solutions (S

= Solution #2

Server-Side Aggregation
(am I being too obvious with this one ?)

Know the use cases
Joins and GroupBy done on server
SQL does this, but do you need it ?
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Problems with SQL Database Queries

Slow
Slowwer with concurrent queries
If you need it fast, it goes even slowwwwwwer !

SQL = Not portable

(Timestamps, especially)




Know your problem space !

Real-Time Monitoring:
Join and GroupBy heavily used

We wrote our own!
Performed in real-time on server-side data
Optimized for real-time requirements




Display of Large Data Volumes (S

= Typical large
implementation,
distributed over several
regions with many
custom applications

= Heatmap View showing
current state of entire
system - size represents
number of servers for
application

= Color represents how
close metric is to SLA -
large red boxes are worst
— drilldown to detail




Complex Visualizations of historical data (&t

Observe “internal load balancing” of Data Grid
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Raw
Data

Example: Server-Side Aggregation/Caching
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= Each cache can maintain its own history

Servlet Data

>
Cached -
Data Totals By App
And TO
Aggregates > Clients
T
Totals By Server
>
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= Result: trend chart of Totals by History has all
data available immediately

= Using SQL would require:

Query 3 tables
2 GroupBys, 2 Joins, + Join on Timestamp (not portable)




Benefits: Server-Side Aggregation

Client requests and gets exactly what is needed

Client processing = zero
Server processing = done ahead of time
Current/History for aggregates readily available (No SQL)

Response time = fast




Solutions (S

= Solution #3

Use Appropriate Design Patterns

Server-Side vs. Client-Side Processing
Efficient Data Transfer Patterns




= Pattern #1:

Data Compaction

(obvious, initial approach for any data transfers)

/ Server \ Packets only partially filled ... / Client \
| A1 1 >

... replaced with full packets K /

... even simple, non-proprietary
algorithms can make big difference




= pPattern #2:

Data Current / Changed

(large data tables with sparse real-time updates)

Entire table sent every update ...
/ Server \
/ Client

> >

~

k / ... instead, send only changed rows K

... little more complex, requires indexing




= pPattern #3:

Data History / Current

(trend chart invoke with real-time updates)

Entire history table sent every update ...
/ Server \

> >
<L
k / ... instead, send history once, then current updates

... similar to current / changed pattern, but specific to history

T



= Pattern #4:

Data Current / Subset

(optimizing transfer of data subsets to multiple clients)

Client
/ \ Changed subset sent to every client ...
Server
>
. Client
register
—
k / indexed

... instead, send subset only to registered client

... requires registration logic coupled with cache




Drill-Down to Detail Metrics
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Benefits: Design Patterns for Data Transfer

Same problem over and over again solved similar way

Reduce load on network
Optimize response time — no unnecessary data
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Conclusions (S

= Conclusion #1:

Know your data !

Data Model designed for real-time
In-memory structures to buffer database
Server-side aggregations




Conclusions (S

= Conclusion #2

Respect Design Patterns !

Server-Side vs. Client-Side Processing
Efficient Data Transfer Patterns
Don’t over-generalize - solve the problem
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Questions?

See www.sl.com
for more into about SL and RTView

Don’t miss SL Booth on Exhibit Floor !



http://www.sl.com/

