8L

Overcoming the Top Four Challenges to
Real-Time Performance in Large-Scale,
Data-Centric Applications

Tom Lubinski
Founder and CEO

SL Corporation
7 March 2012

= Disclaimers

= In 30 years, we've learned a lot
(a grizzled veteran)

= But, we don’t know everything ...
= ... we could be wrong !
= My other computer is a Mac

= We have “shipped” ...

NSNS L AU Qi S o SRR A N L NN

Background (S

Extensive
background in
real-time process

monitoring
La rge volumes of Connecticut Valley Power Critical Tax Season
dynamic data Grid Management System Applications at Intuit
Central Monitoring & Control Apr 17, 2008 11:53:07
- - - B A — prl7, 53 = L
Visualization
technologies
Mission-critical
applications
: 0OCL World Wide NASA Space Shuttle
Shipment Tracking Launch Control System

N L TPORREUL OO i e 0 NN UIER LR R N @ Jv s

Here to talk about Scalability and Performance

Problem Space:

Collection, Analysis, and Visualization in Real-Time
of large volumes of monitoring data from large-
scale, complex, distributed applications

Emphasis: Real-Time, Large Volumes of Data

S G GRS N = o S RN

Challenges (S

= Challenge #1:

Database Performance

Common to see queries taking minutes
How can you get real-time that way ?

Challenges (S

= Challenge #2:

Network Data-Transfer Bandwidth

Bigger pipes, but there’s more data to send
How do you get the greatest throughput ?

Challenges (S

= Challenge #3:

Processor Performance

More cores just means more processes !
How do you optimize your utilization ?

Challenges (S

= Challenge #4:
Lack of Real-Time Predictability

Virtualization is the new time-share !
How can you trust your data ?

/77 1

"time-sharing”, "network computer”, “cloud”, do
things ever really change ?

B ES R R IR N~ o s

Solution - Clues ?

Facts of Life:

Database - can’t live with it, can’t live without it
Network - it's a funnel, no way around it
Processor — must limit what you ask it to do

Virtualization - it's erratic, have to compensate

SR

Solutions (S

= Solution #1:

Proper Data Model

Data structures designed for real-time
In-memory structures to buffer database

Can your application be ...

What is most important part of racecar ?
(besides the engine)

Not a simple High-performance
“current value” Real-time Multi-dimensional
cache Data Cache

Real-Time Cache — optimized for performance !

Current / History Tables:

Indexed Insertion - Indexed extraction -
asynchronous real-time data optimized transfer to clients

@L
Real-Time Cache — Data Processing / Aggregation
Detail
Views
B (u);
Summary
Views

Reduction,
Resolution, Aging Aggregation

Real-Time Cache — Database read/write through
(optimized for timestamped multi-dimensional data)

Ro g end ple e Que
T Y oozszoto
2 August ~E oF-
Hgt Plant Pro on Rate omplete Sun Mon Tue Wed Thu Fi Sat
1[2]3]s]s]e]7 R
8 [o[10]11]r2]13]14
g 15 [16 | 17 [18 [19 [20 [21 |
Q 22|23 [24|25 [26[27] 28
) @ - ” - l
3 (—f --
5 ompleted = 3.0

Real-Time data
automatically
written to DB

Seamless timeline
navigation with automatic
database query

This sounds a bit like Oracle Coherence ...

Caching in an SOA Environment

i Composite
Applications
4 N
Business
Process ’{’ :€_ e i - '{‘
S:f:?;? bl | [e [t [t ks

- &g&v 4{ § - 3;2[:.?; 58

Data
Services

Database Mainframe Web Service

Buffer database
Read/write through
Listeners

Indexed queries

What’s different ?

Multi-Tier Visibility into Monitoring Data (8¢

Caching in an SOA Environment Unified Real-time display of data
from all Application tiers

[Composite
Applications

L - Central Monitoring & Control Apr 17,2008 11:53.07
Business
Process "é' — '€‘ - "é — *€‘

Business |=

Services - l‘lTin . Tﬁr\ {il_i‘ “F“é} o o To
\

Cache

[Data_ : & 8 2
Services Wi . in kl*f | = :

— Ynnloo o
Datasources - H In-depth Monitoring of
Middleware Components

Database Mainframe Web Service

ALy “ . . -t A e
N e) - o RN N
N A | - g _ % Y SNRE? A

Different tools for different problems !

Real-Time Multi-dimensional data:

Current / History Tables:
Multiple rows (time range) of

selected columns returned in one
query

‘ Coherence cache distributes objects
(rows) = optimized horizontally

Real-Time multi-dimensional cache
manages columns and optimizes
coe vertically

AR AN -

Benefits: Indexed Real-Time Caching

Slow SQL queries minimized

Users shielded from database details

Minimize CPU load using effective indexing

Solutions (S

= Solution #2

Server-Side Aggregation
(am I being too obvious with this one ?)

Know the use cases
Joins and GroupBy done on server
SQL does this, but do you need it ?

R ~ - SO N & 1 Ve RS o SRR N .
B =SSR o AR e S SRR RS N e

Problems with SQL Database Queries

Slow
Slowwer with concurrent queries
If you need it fast, it goes even slowwwwwwer !

SQL = Not portable

(Timestamps, especially)

Know your problem space !

Real-Time Monitoring:
Join and GroupBy heavily used

We wrote our own!
Performed in real-time on server-side data
Optimized for real-time requirements

Display of Large Data Volumes (S

= Typical large
implementation,
distributed over several
regions with many
custom applications

= Heatmap View showing
current state of entire
system - size represents
number of servers for
application

= Color represents how
close metric is to SLA -
large red boxes are worst
— drilldown to detail

Complex Visualizations of historical data (&t

Observe “internal load balancing” of Data Grid

Service Metric History Heatmap ‘@ ConnOK |7

ocation: |P|ocessNode01 OFFICE-PC = e Cluster: pocullﬁel—

Process Nodes: History Heatmap of Service Metric

Hit Time (ms): 0

Do Misses Miss Time (ms): 0
Put Time (ms): 55

Random Counts

Max Count:

Max Reps:

Heatmap of Service Metric

I" Batch Size:

Hit Rate {objs/sec): O

Put Rate (objsisec): 18,182

Raw
Data

Example: Server-Side Aggregation/Caching

Servlet Data

>
GroupBy

App Data Totals By App

- To

oinon

> Clients
Server
Server Data Totals By Server
—

QAN w§‘§;\\\‘|§*\=’\ N N\

= Each cache can maintain its own history

Servlet Data

>
Cached -
Data Totals By App
And TO
Aggregates > Clients
T
Totals By Server
>

RS

R AT W N\
% \ \\‘ \\ A"

e

= Result: trend chart of Totals by History has all
data available immediately

= Using SQL would require:

Query 3 tables
2 GroupBys, 2 Joins, + Join on Timestamp (not portable)

Benefits: Server-Side Aggregation

Client requests and gets exactly what is needed

Client processing = zero
Server processing = done ahead of time
Current/History for aggregates readily available (No SQL)

Response time = fast

Solutions (S

= Solution #3

Use Appropriate Design Patterns

Server-Side vs. Client-Side Processing
Efficient Data Transfer Patterns

= Pattern #1:

Data Compaction

(obvious, initial approach for any data transfers)

/ Server \ Packets only partially filled ... / Client \
| A1 1 >

... replaced with full packets K /

... even simple, non-proprietary
algorithms can make big difference

= pPattern #2:

Data Current / Changed

(large data tables with sparse real-time updates)

Entire table sent every update ...
/ Server \
/ Client

> >

~

k / ... instead, send only changed rows K

... little more complex, requires indexing

= pPattern #3:

Data History / Current

(trend chart invoke with real-time updates)

Entire history table sent every update ...
/ Server \

> >
<L
k / ... instead, send history once, then current updates

... similar to current / changed pattern, but specific to history

T

= Pattern #4:

Data Current / Subset

(optimizing transfer of data subsets to multiple clients)

Client
/ \ Changed subset sent to every client ...
Server
>
. Client
register
—
k / indexed

... instead, send subset only to registered client

... requires registration logic coupled with cache

Drill-Down to Detail Metrics

REGION-1 ; APP-1 | PARTITION-1
T1E

! = - s
[s
. .
- e T I R =
Il W | \ = e
o7 V[Perseciavg
. e = = i T T

REGIONS : APP-2 ; PARTITION-S
T2 [l
¥ Tmer

metrics showing internal

- s
[i
- = - gooo T P O — i i
; [
t I I t I \ = ‘.\/_/_’
IIl I I III II o Ly erSecidve
< <)] Persesiava
1% a0 T e e 1% o e T =)
REGIONZ | APR3: PARTITION.42 REGIONE : ARP-1 | PARTITION 40
2 B
[e -
[aa)rs
100] ises [l
=] pso

[] Parssciavg

Al |
- - - 1% a0k 20 T Taso 120 TR 0 Tk Tateo |
m obhisticate istorv an
Tt 1611 —
[T e
- - - L sses
00 =
I l o
I I l I l 0l I +]
1% Taos T4z Tass TWso 10 Taon a0 Tass Tais0

IS [Perseoiavg
1350 408 a0 T35 T80 13%0 T40E a0 43 T80
REGION-A AP : PARTITION-| IEl REGIONS : APP-A_ PARTITIGN-40 [l -

Alert Status

[stemwm Senvice: [asn ™ Pariition: (i 18] |
ASPEN
Minutes of
Timer O —— Status Violation Severity Group
Trafhc ASPEN PP *
Traffic ASPEN Cached WM o a0 _
Traffic ASPEN Errors M N 000D A _
page-AS j “om o om *

Benefits: Design Patterns for Data Transfer

Same problem over and over again solved similar way

Reduce load on network
Optimize response time — no unnecessary data

IRRRNER G AN TR S o SRR RS N T A

Conclusions (S

= Conclusion #1:

Know your data !

Data Model designed for real-time
In-memory structures to buffer database
Server-side aggregations

Conclusions (S

= Conclusion #2

Respect Design Patterns !

Server-Side vs. Client-Side Processing
Efficient Data Transfer Patterns
Don’t over-generalize - solve the problem

8L

Questions?

See www.sl.com
for more into about SL and RTView

Don’t miss SL Booth on Exhibit Floor !

http://www.sl.com/

