
Overcoming the Top Four Challenges to
Real-Time Performance in Large-Scale,

Data-Centric Applications

Tom Lubinski

Founder and CEO

SL Corporation
7 March 2012

 Disclaimers

 In 30 years, we’ve learned a lot

 (a grizzled veteran)

 But, we don’t know everything …

 … we could be wrong !

 My other computer is a Mac

 We have “shipped” …

Connecticut Valley Power
Grid Management System

Extensive
background in
real-time process
monitoring

Critical Tax Season
Applications at Intuit

Large volumes of
dynamic data

OOCL World Wide
Shipment Tracking

Visualization
technologies

NASA Space Shuttle
Launch Control System

Mission-critical
applications

Background

 Here to talk about Scalability and Performance

 Problem Space:

 Collection, Analysis, and Visualization in Real-Time
of large volumes of monitoring data from large-
scale, complex, distributed applications

 Emphasis: Real-Time, Large Volumes of Data

Challenges

 Challenge #1:

 Database Performance

 Common to see queries taking minutes

 How can you get real-time that way ?

Challenges

 Challenge #2:

 Network Data-Transfer Bandwidth

 Bigger pipes, but there’s more data to send

 How do you get the greatest throughput ?

Challenges

 Challenge #3:

 Processor Performance

 More cores just means more processes !

 How do you optimize your utilization ?

Challenges

 Challenge #4:

 Lack of Real-Time Predictability

 Virtualization is the new time-share !

 How can you trust your data ?

 “time-sharing”, “network computer”, “cloud”, do
things ever really change ?

 Solution – Clues ?

 Facts of Life:

 Database – can’t live with it, can’t live without it

 Network – it’s a funnel, no way around it

 Processor – must limit what you ask it to do

 Virtualization - it’s erratic, have to compensate

Solutions

 Solution #1:

 Proper Data Model

 Data structures designed for real-time

 In-memory structures to buffer database

Can your application be …

… like a high-performance racecar ?

… the Transmission …

What is most important part of racecar ?
(besides the engine)

Not a simple
“current value”

cache

High-performance
Real-time Multi-dimensional

Data Cache

For Real-Time performance, it’s the Cache …

Real-Time Cache – optimized for performance !

…

Current / History Tables:

Indexed Insertion -
asynchronous real-time data

Indexed extraction -
optimized transfer to clients

In Out

Real-Time Cache – Data Processing / Aggregation

Reduction,
Resolution, Aging

Detail
Views

Summary
Views

Aggregation

Raw
Data Reduced

S

Real-Time Cache – Database read/write through
(optimized for timestamped multi-dimensional data)

Seamless timeline
navigation with automatic

database query

Real-Time data
automatically
written to DB

This sounds a bit like Oracle Coherence …

Buffer database

Read/write through

Listeners

Indexed queries

What’s different ?

Multi-Tier Visibility into Monitoring Data

In-depth Monitoring of
Middleware Components

Unified Real-time display of data
from all Application tiers

Update for ORCL

 Different tools for different problems !

 Real-Time Multi-dimensional data:

…

Current / History Tables:
Multiple rows (time range) of

selected columns returned in one
query

Coherence cache distributes objects

(rows) = optimized horizontally

Real-Time multi-dimensional cache
manages columns and optimizes

vertically

 Benefits: Indexed Real-Time Caching

 Slow SQL queries minimized

 Users shielded from database details

 Minimize CPU load using effective indexing

Solutions

 Solution #2

 Server-Side Aggregation

 (am I being too obvious with this one ?)

 Know the use cases

 Joins and GroupBy done on server

 SQL does this, but do you need it ?

 Problems with SQL Database Queries

 Slow

 Slowwer with concurrent queries

 If you need it fast, it goes even slowwwwwwer !

 SQL = Not portable

 (Timestamps, especially)

 Know your problem space !

 Real-Time Monitoring:

 Join and GroupBy heavily used

 We wrote our own!
 Performed in real-time on server-side data

 Optimized for real-time requirements

Display of Large Data Volumes

 Typical large
implementation,
distributed over several
regions with many
custom applications

 Heatmap View showing
current state of entire
system – size represents
number of servers for
application

 Color represents how
close metric is to SLA –
large red boxes are worst
– drilldown to detail

Complex Visualizations of historical data

Observe “internal load balancing” of Data Grid

 Example: Server-Side Aggregation/Caching

Join on
App

GroupBy
App

GroupBy
Server

Join on
Server

To
Clients

Raw
Data

Servlet Data

App Data

Server Data

Totals By App

Totals By Server

 Each cache can maintain its own history

To
Clients

Cached
Data
And
Aggregates

Servlet Data

Totals By App

Totals By Server …
…

…

 Result: trend chart of Totals by History has all
data available immediately

 Using SQL would require:

Query 3 tables

2 GroupBys, 2 Joins, + Join on Timestamp (not portable)

 Benefits: Server-Side Aggregation

 Client requests and gets exactly what is needed

 Client processing = zero

 Server processing = done ahead of time

 Current/History for aggregates readily available (No SQL)

 Response time = fast

Solutions

 Solution #3

 Use Appropriate Design Patterns

 Server-Side vs. Client-Side Processing

 Efficient Data Transfer Patterns

 Pattern #1:

 Data Compaction

 (obvious, initial approach for any data transfers)

Server
Client

Packets only partially filled …

… replaced with full packets

encode decode

… even simple, non-proprietary
algorithms can make big difference

 Pattern #2:

 Data Current / Changed

 (large data tables with sparse real-time updates)

Server
Client

Entire table sent every update …

… instead, send only changed rows

encode decode

… little more complex, requires indexing

 Pattern #3:

 Data History / Current

 (trend chart invoke with real-time updates)

…

Server
Client

Entire history table sent every update …

… instead, send history once, then current updates

manage merge

… similar to current / changed pattern, but specific to history

 Pattern #4:

 Data Current / Subset

 (optimizing transfer of data subsets to multiple clients)

Server

Client

Changed subset sent to every client …

… instead, send subset only to registered client

register
indexed

listen
indexed

Client

listen
indexed

… requires registration logic coupled with cache

Drill-Down to Detail Metrics

 Drilldown to detail level
metrics showing internal
metrics from each application

 Sophisticated history and
alert view with fine-tuning of
thresholds for each metric

 Benefits: Design Patterns for Data Transfer

 Same problem over and over again solved similar way

 Reduce load on network

 Optimize response time – no unnecessary data

Conclusions

 Conclusion #1:

 Know your data !

 Data Model designed for real-time

 In-memory structures to buffer database

 Server-side aggregations

Conclusions

 Conclusion #2

 Respect Design Patterns !

 Server-Side vs. Client-Side Processing

 Efficient Data Transfer Patterns

 Don’t over-generalize – solve the problem

Questions?

See www.sl.com
for more into about SL and RTView

 Don’t miss SL Booth on Exhibit Floor !

http://www.sl.com/

