
Overcoming the Top Four Challenges to
Real-Time Performance in Large-Scale,

Data-Centric Applications

Tom Lubinski

Founder and CEO

SL Corporation
7 March 2012

 Disclaimers

 In 30 years, we’ve learned a lot

 (a grizzled veteran)

 But, we don’t know everything …

 … we could be wrong !

 My other computer is a Mac

 We have “shipped” …

Connecticut Valley Power
Grid Management System

Extensive
background in
real-time process
monitoring

Critical Tax Season
Applications at Intuit

Large volumes of
dynamic data

OOCL World Wide
Shipment Tracking

Visualization
technologies

NASA Space Shuttle
Launch Control System

Mission-critical
applications

Background

 Here to talk about Scalability and Performance

 Problem Space:

 Collection, Analysis, and Visualization in Real-Time
of large volumes of monitoring data from large-
scale, complex, distributed applications

 Emphasis: Real-Time, Large Volumes of Data

Challenges

 Challenge #1:

 Database Performance

 Common to see queries taking minutes

 How can you get real-time that way ?

Challenges

 Challenge #2:

 Network Data-Transfer Bandwidth

 Bigger pipes, but there’s more data to send

 How do you get the greatest throughput ?

Challenges

 Challenge #3:

 Processor Performance

 More cores just means more processes !

 How do you optimize your utilization ?

Challenges

 Challenge #4:

 Lack of Real-Time Predictability

 Virtualization is the new time-share !

 How can you trust your data ?

 “time-sharing”, “network computer”, “cloud”, do
things ever really change ?

 Solution – Clues ?

 Facts of Life:

 Database – can’t live with it, can’t live without it

 Network – it’s a funnel, no way around it

 Processor – must limit what you ask it to do

 Virtualization - it’s erratic, have to compensate

Solutions

 Solution #1:

 Proper Data Model

 Data structures designed for real-time

 In-memory structures to buffer database

Can your application be …

… like a high-performance racecar ?

… the Transmission …

What is most important part of racecar ?
(besides the engine)

Not a simple
“current value”

cache

High-performance
Real-time Multi-dimensional

Data Cache

For Real-Time performance, it’s the Cache …

Real-Time Cache – optimized for performance !

…

Current / History Tables:

Indexed Insertion -
asynchronous real-time data

Indexed extraction -
optimized transfer to clients

In Out

Real-Time Cache – Data Processing / Aggregation

Reduction,
Resolution, Aging

Detail
Views

Summary
Views

Aggregation

Raw
Data Reduced

S

Real-Time Cache – Database read/write through
(optimized for timestamped multi-dimensional data)

Seamless timeline
navigation with automatic

database query

Real-Time data
automatically
written to DB

This sounds a bit like Oracle Coherence …

Buffer database

Read/write through

Listeners

Indexed queries

What’s different ?

Multi-Tier Visibility into Monitoring Data

In-depth Monitoring of
Middleware Components

Unified Real-time display of data
from all Application tiers

Update for ORCL

 Different tools for different problems !

 Real-Time Multi-dimensional data:

…

Current / History Tables:
Multiple rows (time range) of

selected columns returned in one
query

Coherence cache distributes objects

(rows) = optimized horizontally

Real-Time multi-dimensional cache
manages columns and optimizes

vertically

 Benefits: Indexed Real-Time Caching

 Slow SQL queries minimized

 Users shielded from database details

 Minimize CPU load using effective indexing

Solutions

 Solution #2

 Server-Side Aggregation

 (am I being too obvious with this one ?)

 Know the use cases

 Joins and GroupBy done on server

 SQL does this, but do you need it ?

 Problems with SQL Database Queries

 Slow

 Slowwer with concurrent queries

 If you need it fast, it goes even slowwwwwwer !

 SQL = Not portable

 (Timestamps, especially)

 Know your problem space !

 Real-Time Monitoring:

 Join and GroupBy heavily used

 We wrote our own!
 Performed in real-time on server-side data

 Optimized for real-time requirements

Display of Large Data Volumes

 Typical large
implementation,
distributed over several
regions with many
custom applications

 Heatmap View showing
current state of entire
system – size represents
number of servers for
application

 Color represents how
close metric is to SLA –
large red boxes are worst
– drilldown to detail

Complex Visualizations of historical data

Observe “internal load balancing” of Data Grid

 Example: Server-Side Aggregation/Caching

Join on
App

GroupBy
App

GroupBy
Server

Join on
Server

To
Clients

Raw
Data

Servlet Data

App Data

Server Data

Totals By App

Totals By Server

 Each cache can maintain its own history

To
Clients

Cached
Data
And
Aggregates

Servlet Data

Totals By App

Totals By Server …
…

…

 Result: trend chart of Totals by History has all
data available immediately

 Using SQL would require:

Query 3 tables

2 GroupBys, 2 Joins, + Join on Timestamp (not portable)

 Benefits: Server-Side Aggregation

 Client requests and gets exactly what is needed

 Client processing = zero

 Server processing = done ahead of time

 Current/History for aggregates readily available (No SQL)

 Response time = fast

Solutions

 Solution #3

 Use Appropriate Design Patterns

 Server-Side vs. Client-Side Processing

 Efficient Data Transfer Patterns

 Pattern #1:

 Data Compaction

 (obvious, initial approach for any data transfers)

Server
Client

Packets only partially filled …

… replaced with full packets

encode decode

… even simple, non-proprietary
algorithms can make big difference

 Pattern #2:

 Data Current / Changed

 (large data tables with sparse real-time updates)

Server
Client

Entire table sent every update …

… instead, send only changed rows

encode decode

… little more complex, requires indexing

 Pattern #3:

 Data History / Current

 (trend chart invoke with real-time updates)

…

Server
Client

Entire history table sent every update …

… instead, send history once, then current updates

manage merge

… similar to current / changed pattern, but specific to history

 Pattern #4:

 Data Current / Subset

 (optimizing transfer of data subsets to multiple clients)

Server

Client

Changed subset sent to every client …

… instead, send subset only to registered client

register
indexed

listen
indexed

Client

listen
indexed

… requires registration logic coupled with cache

Drill-Down to Detail Metrics

 Drilldown to detail level
metrics showing internal
metrics from each application

 Sophisticated history and
alert view with fine-tuning of
thresholds for each metric

 Benefits: Design Patterns for Data Transfer

 Same problem over and over again solved similar way

 Reduce load on network

 Optimize response time – no unnecessary data

Conclusions

 Conclusion #1:

 Know your data !

 Data Model designed for real-time

 In-memory structures to buffer database

 Server-side aggregations

Conclusions

 Conclusion #2

 Respect Design Patterns !

 Server-Side vs. Client-Side Processing

 Efficient Data Transfer Patterns

 Don’t over-generalize – solve the problem

Questions?

See www.sl.com
for more into about SL and RTView

 Don’t miss SL Booth on Exhibit Floor !

http://www.sl.com/

