

Approximate methods for scalable
data mining
Andrew Clegg
Data Analytics & Visualization Team
Pearson Technology

Twitter: @andrew_clegg

Approximate methods for scalable data mining l 08/03/132

Outline

1. Intro
2. What are approximate methods and why are they cool?
3. Set membership (finding non-unique items)
4. Cardinality estimation (counting unique items)
5. Frequency estimation (counting occurrences of items)
6. Locality-sensitive hashing (finding similar items)
7. Further reading and sample code

Approximate methods for scalable data mining l 08/03/133

Intro
Me and the team

London

Dario Villanueva
Ablanedo

Data Analytics Engineer

Hubert Rogers
Data Scientist

Andrew Clegg
Technical Manager

Kostas Perifanos
Data Analytics

Engineer

Andreas
Galatoulas

Product Manager

Approximate methods for scalable data mining l 08/03/134

Intro
Motivation for getting into approximate methods

Counting unique terms across ElasticSearch shards

Cluster
nodes Master

node

Distinct
terms per
shard

Globally
distinct
terms

Client
Number of
globally
distinct
terms

Icons from Dropline Neu! http://findicons.com/pack/1714/dropline_neu

Approximate methods for scalable data mining l 08/03/135

Intro
Motivation for getting into approximate methods

But what if each term-set is BIG?

Memory cost

CPU cost to
serialize

Network
transfer cost CPU cost to

deserialize

CPU & memory cost to
merge & count sets

… and what if they’re too big to fit in memory?

Approximate methods for scalable data mining l 08/03/136

But we’ll come back to that later.

Approximate methods for scalable data mining l 08/03/137

What are approximate methods?
Trading accuracy for scalability

• Often use probabilistic data structures
– a.k.a. “Sketches”

• Mostly stream-friendly
– Allow you to query data you haven’t even kept!

• Generally simple to parallelize

• Predictable error rate (can be tuned)

Approximate methods for scalable data mining l 08/03/138

What are approximate methods?
Trading accuracy for scalability

• Represent characteristics or summary of data

• Use much less space than full dataset (often via hashing)
– Can alleviate disk, memory, network bottlenecks

• Generally incur more CPU load than exact methods
– This may not be true in a distributed system, overall:

[de]serialization for example
– Many data-centric systems have CPU to spare anyway

Approximate methods for scalable data mining l 08/03/139

Set membership
Have I seen this item before?

Approximate methods for scalable data mining l 08/03/1310

Set membership
Naïve approach

• Put all items in a hash table in memory
– e.g. HashSet in Java, set in Python

• Checking whether item exists is very cheap

• Not so good when items don’t fit in memory any more

• Merging big sets (to increase query speed) can be expensive
– Especially if they are on different cluster nodes

Approximate methods for scalable data mining l 08/03/1311

Set membership
Bloom filter

A probabilistic data structure for testing set membership

Real-life example:

BigTable and HBase use these to avoid wasted lookups for non-
existent row and column IDs.

Approximate methods for scalable data mining l 08/03/1312

Set membership
Bloom filter: creating and populating

• Bitfield of size n (can be quite large but << total data size)
• k independent hash functions with integer output in [0, n-1]

• For each input item:
– For each hash:
○ Hash item to get an index into the bitfield
○ Set that bit to 1

i.e. Each item yields a unique pattern of k bits.
These are ORed onto the bitfield when the item is added.

Approximate methods for scalable data mining l 08/03/1313

Set membership
Bloom filter: querying

• Hash the query item with all k hash functions
• Are all of the corresponding bits set?

– No = we have never seen this item before
– Yes = we have probably seen this item before

• Probability of false positive depends on:
– n (bitfield size)
– number of items added

• k has an optimum value also based on these
– Must be picked in advance based on what you expect, roughly

Approximate methods for scalable data mining l 08/03/1314

Set membership
Bloom filter

Example (3 elements, 3 hash functions, 18 bits)

Image from Wikipedia http://en.wikipedia.org/wiki/File:Bloom_filter.svg

Approximate methods for scalable data mining l 08/03/1315

Set membership
Bloom filter

Cool properties

• Union/intersection = bitwise OR/AND
• Add/query operations stay at O(k) time (and they’re fast)
• Filter takes up constant space

– Can be rebuilt bigger once saturated, if you still have the data

Extensions

• BFs supporting “remove”, scalable (growing) BFs, stable BFs, …

Approximate methods for scalable data mining l 08/03/1316

Cardinality estimation
How many distinct items have I seen?

Approximate methods for scalable data mining l 08/03/1317

Cardinality calculation
Naïve approach

• Put all items in a hash table in memory
– e.g. HashSet in Java, set in Python
– Duplicates are ignored

• Count the number remaining at the end
– Implementations typically track this -- fast to check

• Not so good when items don’t fit in memory any more

• Merging big sets can be expensive
– Especially if they are on different cluster nodes

Approximate methods for scalable data mining l 08/03/1318

Cardinality estimation
Probabilistic counting

An approximate method for counting unique items

Real-life example:

Implementation of parallelizable distinct counts in ElasticSearch.
https://github.com/ptdavteam/elasticsearch-approx-plugin

Approximate methods for scalable data mining l 08/03/1319

Cardinality estimation
Probabilistic counting

Intuitive explanation

Long runs of trailing 0s in random bit strings are rare.

But the more bit strings you look at, the more likely you
are to see a long one.

So “longest run of trailing 0s seen” can be used as an
estimator of “number of unique bit strings seen”.

01110001
11101010
00100101
11001100
11110100
11101100
00010100
00000001
00000010
10001110
01110100
01101010
01111111
00100010
00110000
00001010
01000100
01111010
01011101
00000100

Approximate methods for scalable data mining l 08/03/1320

Cardinality estimation
Probabilistic counting: basic algorithm

• Let n = 0
• For each input item:

– Hash item into bit string
– Count trailing zeroes in bit string
– If this count > n:
○ Let n = count

Approximate methods for scalable data mining l 08/03/1321

Cardinality estimation
Probabilistic counting: calculating the estimate

• n = longest run of trailing 0s seen
• Estimated cardinality (“count distinct”) = 2^n … that’s it!

This is an estimate, but not actually a great one.

Improvements

• Various “fudge factors”, corrections for extreme values, etc.
• Multiple hashes in parallel, average over results (LogLog algorithm)
• Harmonic mean instead of geometric (HyperLogLog algorithm)

Approximate methods for scalable data mining l 08/03/1322

Cardinality estimation
Probabilistic counting and friends

Cool properties

• Error rates are predictable
– And tunable, for multi-hash methods

• Can be merged easily
– max(longest run counters from all shards)

• Add/query operations are constant time (and fast too)
• Data structure is just counter[s]

Approximate methods for scalable data mining l 08/03/1323

Frequency estimation
How many occurences of each item have I seen?

Approximate methods for scalable data mining l 08/03/1324

Frequency calculation
Naïve approach

• Maintain a key-value hash table from item -> counter
– e.g. HashMap in Java, dict in Python

• Not so good when items don’t fit in memory any more

• Merging big maps can be expensive
– Especially if they are on different cluster nodes

Approximate methods for scalable data mining l 08/03/1325

Frequency estimation
Count-min sketch

A probabilistic data structure for counting occurences of
items

Real-life example:

Keeping track of traffic volume by IP address in a firewall, to
detect anomalies.

Approximate methods for scalable data mining l 08/03/1326

Frequency estimation
Count-min sketch: creating and populating

• k integer arrays, each of length n
• k hash functions yielding values in [0, n-1]

– These values act as indexes into the arrays

• For each input item:
– For each hash:
○ Hash item to get index into corresponding array
○ Increment the value at that position by 1

Approximate methods for scalable data mining l 08/03/1327

Frequency estimation
Count-min sketch: creating and populating

+2A3

+1+1A2

+1+1A1

“foo”
h1 h2 h3

h1 h2 h3

“bar”

Approximate methods for scalable data mining l 08/03/1328

Frequency estimation
Count-min sketch: querying

• For each hash function:
– Hash query item to get index into corresponding array
– Get the count at that position

• Return the lowest of these counts

This minimizes the effect of hash collisions.

(Collisions can only cause over-counting, not under-counting)

Approximate methods for scalable data mining l 08/03/1329

Frequency estimation
Count-min sketch: querying

0200000000A3

0001001000A2

0000100010A1

“foo”
h1 h2 h3

min(1, 1, 2) = 1

Caveat: You can’t iterate through the items, they’re not stored at all.

Approximate methods for scalable data mining l 08/03/1330

Frequency estimation
Count-min sketch

Cool properties

• Fast adding and querying in O(k) time
• As with Bloom filter: more hashes = lower error
• Mergeable by cellwise addition
• Better accuracy for higher-frequency items (“heavy hitters”)
• Can also be used to find quantiles

Approximate methods for scalable data mining l 08/03/1331

Similarity search
Which items are most similar to this one?

Approximate methods for scalable data mining l 08/03/1332

Similarity search
Naïve approach

Nearest-neighbour search
• For each stored item:

– Compare to query item via appropriate distance metric*

– Keep if closer than previous closest match

• Distance metric calculation can be expensive
– Especially if items are many-dimensional records

• Can be slow even if data small enough to fit in memory

*Cosine distance, Hamming distance, Jaccard distance etc.

Approximate methods for scalable data mining l 08/03/1333

Similarity search
Locality-sensitive hashing

A probabilistic method for nearest-neighbour search

Real-life example:

Finding users with similar music tastes in an online radio service.

Approximate methods for scalable data mining l 08/03/1334

Similarity search
Locality-sensitive hashing

Intuitive explanation

Typical hash functions:
• Similar inputs yield very different outputs
Locality-sensitive hash functions:
• Similar inputs yield similar or identical outputs

So: Hash each item, then just compare hashes.
– Can be used to pre-filter items before exact comparisons
– You can also index the hashes for quick lookup

Approximate methods for scalable data mining l 08/03/1335

Similarity search
Locality-sensitive hashing: random hyperplanes

Treat n-valued items as vectors in n-dimensional space.

Draw k random hyperplanes in that space.

For each hyperplane:
Is each vector above it (1) or below it (0)?

Item1

h1 h2

h3

Item2
Hash(Item1) = 011
Hash(Item2) = 001

In this example: n=2, k=3

As the cosine distance decreases, the
probability of a hash match increases.

Approximate methods for scalable data mining l 08/03/1336

Similarity search
Locality-sensitive hashing: random hyperplanes

Cool properties

• Hamming distance between hashes approximates cosine distance
• More hyperplanes (higher k) -> bigger hashes -> better estimates

• Can use to narrow search space before exact nearest-neighbours

• Various ways to combine sketches for better separation

Approximate methods for scalable data mining l 08/03/1337

Similarity search
Locality-sensitive hashing

Other approaches

• Bit sampling: approximates Hamming distance
• MinHashing: approximates Jaccard distance
• Random projection: approximates Euclidean distance

Approximate methods for scalable data mining l 08/03/1338

Wrap-up

Approximate methods for scalable data mining l 08/03/1339

http://highlyscalable.wordpress.com/2012/05/01/probabilistic-structures-web-analytics-data-mining/

Approximate methods for scalable data mining l 08/03/1340

Resources

Ebook available free from:
http://infolab.stanford.edu/~ullman/mmds.html

stream-lib:

https://github.com/clearspring/stream-lib

Java libraries for cardinality, set membership,
frequency and top-N items (not covered here)

No canonical source of multiple LSH algorithms,
but plenty of separate implementations

Wikipedia is pretty good on these topics too

