
Inside

Architecture
Lanyrd's

Andrew Godwin
Web Engineer, Lanyrd
@andrewgodwin

WHO AM I?

Andrew Godwin
Web developer

Systems administrator

Technical architect

Django core developer

LANYRD: THE EARLY YEARS

The Origin Story

LANYRD: THE EARLY YEARS

2010 2011 2012 2013

June 2010

LANYRD: THE EARLY YEARS

2010 2011 2012 2013

August 2010

Good music on, an orange juice and some
CSS fun in front of me, we have an apartment
in Casablanca! (for a week or two anyway :)

” ”
@natbat

7:19 pm, 18 August 2010

LANYRD: THE EARLY YEARS

2010 2011 2012 2013

August 2010

We launched lanyrd.com/ ! Go easy on it,
the log files are going a bit nuts,
who knew Twitter was viral?

” ”
@simonw

10:52 am, 31 August 2010

LANYRD: THE EARLY YEARS

2010 2011 2012 2013

August 2010

Right... this clearly isn't sustainable. Going to
have to switch the site in to read only mode
for a few hours, sorry everyone!

” ”
@simonw

11:35 am, 31 August 2010

LANYRD: THE EARLY YEARS

2010 2011 2012 2013

January 2011

Natalie and Simon start three months of
YCombinator, in California.

LANYRD: THE EARLY YEARS

2010 2011 2012 2013

September 2011

Lanyrd closes a $1.4 million seed funding
round, moves back to London.

LANYRD TODAY

2010 2011 2012 2013

March 2013

∙ Conferences

∙ Profile pages

∙ Emails

∙ Coverage

∙ Topics

∙ Guides

∙ Mobile app∙ Dashboard

LANYRD TODAY

2010 2011 2012 2013

March 2013

LANYRD TODAY

2010 2011 2012 2013

March 2013

LANYRD TODAY

2010 2011 2012 2013

March 2013

LANYRD TODAY

2010 2011 2012 2013

March 2013

LANYRD TODAY

2010 2011 2012 2013

March 2013

LANYRD TODAY

2010 2011 2012 2013

March 2013

Key dynamic parts:

Users tracking/attending events

Users tracking each other

Users tracking topics and guides

THE STACK TODAY

What we run on

THE STACK TODAY

Browser

Nginx

HAProxy

Varnish

Gunicorn
Main site runtime

Amazon S3

Celery
Task workers

Redis

PostgreSQL Solr

SSL Termination

Web Cache

Load balancer

Static files & uploads

Tasks, Set calcs

Search and facetingMain data store

Memcached
Fragment caching

THE STACK TODAY

Lanyrd is almost entirely Django (Python)

Background tasks use Celery, a Django task queue

Management tasks/cron jobs also run inside the framework

The Django application is served by Gunicorn containers

THE STACK TODAY

Main data store for everything except uploads

We run a master and a replicated slave

Around 80GB of data in five databases

Each server runs on a RAID 1 disk array

PostgreSQL

THE STACK TODAY

Task queue transport for Celery and tweet listeners

Contains user sets for every conference, user and topic

Used for efficient narrowing of queries before Solr is hit

Redis

THE STACK TODAY

Stores conferences, users, sessions and more

Very rich metadata on each item

Heavy use of sharding thoroughout the site

Solr

We run a master and a replicated slave

THE STACK TODAY

First point of call for all requests

Caches most anonymous requests

Enforces read-only mode if enabled

Varnish

One used and one hot spare at all times

THE STACK TODAY

Sits behind Varnish

Distributes load amongst frontend servers

Re-routes requests during deploys

HAProxy

Two in use at all times, identically configured

THE STACK TODAY

Stores all uploaded files from users

Upload forms post directly to S3

Serves all static assets for the site (images, CSS, JS)

S3

Static assets are versioned with hash to help cache break

THE STACK TODAY

Browser

Nginx

HAProxy

Varnish

Gunicorn
Main site runtime

Amazon S3

Celery
Task workers

Redis

PostgreSQL Solr

SSL Termination

Web Cache

Load balancer

Static files & uploads

Tasks, Set calcs

Search and facetingMain data store

Memcached
Fragment caching

THE STACK BEFORE

What we've eliminated

THE STACK BEFORE

Stored analytics, logs and some other data

Lack of schema meant some bad data persisted

Poor complex query performance

MongoDB

Useful for quick prototyping

THE STACK BEFORE

Primary data store for things not in MongoDB

Very poor complex query performance

No advanced field types

MySQL

Full database locks during schema changes

A TALE OF TWO DBS

The Great Move of 2012

A TALE OF TWO DBS

Amazon EC2

MySQL

Softlayer

PostgreSQL

A TALE OF TWO DBS

Why?
Predictable loading means EC2 unnecessary

Better I/O throughput

Both moves required database downtime

A TALE OF TWO DBS

How?
Replicate Solr and Redis across to new servers

Enter read-only mode

Dump MySQL data

Convert MySQL dump into PostgreSQL dump

Load PostgreSQL dump

Re-point DNS, proxy requests from old servers

Exit read-only mode

A TALE OF TWO DBS

Time in read-only mode: 1 ½ hours

Downtime: 0 hours

CONTENT IS KING

The Advantages of Content

CONTENT IS KING

Read-only mode is entirely viable
An hour or two at most

Everyone logged out

Varnish blocks POSTs, caches everything aggressively

CONTENT IS KING

Indexing delay is acceptable
Most site views are driven by Solr

1 or 2 minute indexing delay

Some views add in recent changes directly

FEATURE FLAGS

Always be deploying

FEATURE FLAGS

Continuous Deployment
We deploy at least 5 times a day, if not 20

Nearly all code goes into master or short-lived branches

Anything unreleased is feature flagged

FEATURE FLAGS

Feature flags
Simple named boolean toggles

Settable by user, user tag, or conference

Can change templates, view code, URLs, etc.

FEATURE FLAGS

Flag management

User tag management

WHO WROTE THAT? OH, ME

Legacy code & decisions

WHO WROTE THAT? OH, ME

Technical Debt
It's fine to have some - it can speed things up

A good chunk of ours is gone, some remains

Big schema changes get harder and harder

SMALL AND NIMBLE

The power of small teams

SMALL AND NIMBLE

Six people

SMALL AND NIMBLE

Six people

2.5
Back-end

developers

1.75
Front-end
developers

1.5
Designers

0.75
System

administrators

0.75
Business

operations

0.5
Mobile

developers

SMALL AND NIMBLE

Awareness
Everyone knows everything that's happening

Daily stand-ups

Weekly show-and-tell sessions

SMALL AND NIMBLE

Always deployable
Master branch always shippable

Large development behind feature flags

Code review for nastier changes

LESSONS LEARNED

What's important here?

LESSONS LEARNED

Small and nimble
Continuous deployment and development style allows
easy project changing

No long approval processes

Less than ½ hour from report to shipped fix

LESSONS LEARNED

Content is great
Read-only mode allows less painful downtimes

Heavy caching smooths out our load

Learnable load patterns

LESSONS LEARNED

Fix it while you can
The bigger you get, the harder a fix

We moved to PostgreSQL just in time

Big schema changes now take days of coding

LESSONS LEARNED

Six amazing people
You don't need a big team to write a complex product

Communication is absolutely key

Using Open Source well is also crucial

Thank you.
Andrew Godwin

Sponsor or promote your company using events?
Get in touch:

@andrewgodwin
http://aeracode.org

info@lanyrd.com

