
Dynamo, Five Years Later
Andy Gross
Chief Architect, Basho Technologies
QCon London 2013

Friday, March 8, 13

Dynamo

Published October 2007 @ SOSP

Describes a collection of distributed systems
techniques applied to low-latency key-value storage

Spawned (along with BigTable) many imitators, an
industry (LinkedIn -> Voldemort, Facebook ->
Cassandra)

Authors nearly got fired from Amazon for publishing

Friday, March 8, 13

Riak - A Dynamo Clone

First lines of first prototype written in Fall 2007 on a
plane on the way to my Basho interview

“Technical Debt” is another term we use at Basho for
this code

Mostly Erlang with some C/C++

Apache2 Licensed

First release in 2009, 1.3 released 2/21/13

Friday, March 8, 13

Basho

Friday, March 8, 13

Basho

Founded late 2007 by ex-Akamai people

Currently ~120 employees, distributed, with offices in
Cambridge, San Francisco, London, and Tokyo

We sponsor of Riak Open Source

We sell Riak Enterprise (Riak + Multi-DC replication)

We sell Riak CS (S3 clone backed by Riak Enterprise)

Friday, March 8, 13

Principles

Always-writable

Incrementally scalable

Symmetrical

Decentralized

Heterogenous

Focus on SLAs, tail latency

Friday, March 8, 13

Techniques

Consistent Hashing

Vector Clocks

Read Repair

Anti-Entropy

Hinted Handoff

Gossip Protocol

Friday, March 8, 13

Consistent Hashing

Invented by Danny Lewin and others @ MIT/Akamai

Minimizes remapping of keys when number of hash
slots changes

Originally applied to CDNs, used in Dynamo for replica
placement

Enables incremental scalability, even spread

Minimizes hot spots

Friday, March 8, 13

Friday, March 8, 13

Vector Clocks

Introduced by Mattern et al, in 1988

Extends Lamport’s timestamps (1978)

Each value in Dynamo tagged with vector clock

Allows detection of stale values, logical siblings

Friday, March 8, 13

Read Repair

Update stale versions opportunistically on reads
(instead of writes)

Pushes system toward consistency, after returning
value to client

Reflects focus on a cheap, always-available write path

Friday, March 8, 13

Hinted Handoff

Any node can accept writes for other nodes if they’re
down

All messages include a destination

Data accepted by node other than destination is
handed off when node recovers

As long as a single node is alive the cluster can accept
a write

Friday, March 8, 13

Anti-Entropy

Replicas maintain a Merkle Tree of keys and their
versions/hashes

Trees periodically exchanged with peer vnodes

Merkle tree enables cheap comparison

Only values with different hashes are exchanged

Pushes system toward consistency

Friday, March 8, 13

Gossip Protocol

Decentralized approach to managing global state

Trades off atomicity of state changes for a
decentralized approach

Volume of gossip can overwhelm networks without
care

Friday, March 8, 13

Hinted Handoff

Friday, March 8, 13

Hinted Handoff

• Node fails

X

X

X
X

X

X

X
X

Friday, March 8, 13

Hinted Handoff

• Node fails

• Requests go to fallback

hash(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

X

X

X
X

X

X

X
X

Friday, March 8, 13

Hinted Handoff

• Node fails

• Requests go to fallback

• Node comes back

hash(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Friday, March 8, 13

Hinted Handoff

• Node fails

• Requests go to fallback

• Node comes back

• “Handoff” - data returns
to recovered node

hash(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Friday, March 8, 13

Hinted Handoff

• Node fails

• Requests go to fallback

• Node comes back

• “Handoff” - data returns
to recovered node

• Normal operations
resume

hash(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Friday, March 8, 13

Anatomy of a Request
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Friday, March 8, 13

Anatomy of a Request
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

client
Riak

Friday, March 8, 13

Anatomy of a Request
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Get Handler (FSM)

client
Riak

Friday, March 8, 13

Anatomy of a Request
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Get Handler (FSM)

client
Riak

hash(“blocks/
6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

== 10, 11, 12

Friday, March 8, 13

Anatomy of a Request
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Get Handler (FSM)

client
Riak

hash(“blocks/
6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

== 10, 11, 12

Coordinating node
Cluster

6 7 8 9 10 11 12 13 14 15 16

The Ring

Friday, March 8, 13

Anatomy of a Request
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Get Handler (FSM)

client
Riak

get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)
Coordinating node

Cluster

6 7 8 9 10 11 12 13 14 15 16

The Ring

Friday, March 8, 13

Anatomy of a Request
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Get Handler (FSM)

client
Riak

Coordinating node
Cluster

6 7 8 9 10 11 12 13 14 15 16

The Ring

R=2

Friday, March 8, 13

Anatomy of a Request
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Get Handler (FSM)

client
Riak

Coordinating node
Cluster

6 7 8 9 10 11 12 13 14 15 16

The Ring

R=2 v1

Friday, March 8, 13

Anatomy of a Request
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Get Handler (FSM)

client
Riak

R=2 v1 v2

Friday, March 8, 13

Anatomy of a Request
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Get Handler (FSM)

client
Riak

R=2 v2

v2

Friday, March 8, 13

Anatomy of a Request
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

v2

Friday, March 8, 13

Read Repair
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Get Handler (FSM)

client
Riak

Coordinating node
Cluster

6 7 8 9 10 11 12 13 14 15 16

R=2 v1 v2

v2

v2v1

Friday, March 8, 13

Read Repair
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Get Handler (FSM)

client
Riak

Coordinating node
Cluster

6 7 8 9 10 11 12 13 14 15 16

R=2 v2

v2

v2v1

Friday, March 8, 13

Read Repair
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Get Handler (FSM)

client
Riak

Coordinating node
Cluster

6 7 8 9 10 11 12 13 14 15 16

R=2 v2

v2

v2v1v1

Friday, March 8, 13

v2v2

Read Repair
get(“blocks/6307C89A-710A-42CD-9FFB-2A6B39F983EA”)

Get Handler (FSM)

client
Riak

Coordinating node
Cluster

6 7 8 9 10 11 12 13 14 15 16

R=2 v2

v2

v2v2v2

Friday, March 8, 13

Erlang/OTP Runtime

Riak Architecture

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs HTTP

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs HTTP Protocol Buffers

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs HTTP Protocol Buffers

Erlang local client

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

HTTP Protocol Buffers

Erlang local client

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

Riak Core

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

Riak Core

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

consistent hashing

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

Riak Core

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

membership
consistent hashing

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

Riak Core

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

membership
consistent hashing handoff

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

Riak Core

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

membership
consistent hashing handoff

node-liveness

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

Riak Core

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

membership
consistent hashing handoff

node-liveness
gossip

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

Riak Core

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

membership
consistent hashing handoff

node-liveness
gossip

buckets

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

Riak Core

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

membership
consistent hashing handoff

node-liveness
gossip

buckets

vnode master

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

Riak Core

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

membership
consistent hashing handoff

node-liveness
gossip

buckets

vnodes

vnode master

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

Riak Core

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

membership
consistent hashing handoff

node-liveness
gossip

buckets

vnodes

storage backend

vnode master

Friday, March 8, 13

Erlang/OTP Runtime

Riak KV

Riak Architecture
Client APIs

Request Coordination

Riak Core

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

membership
consistent hashing handoff

node-liveness
gossip

buckets

vnodes

storage backend

JS Runtime

vnode master

Friday, March 8, 13

Problems with Dynamo

Eventual Consistency is harsh mistress

Pushes conflict resolution to clients

Key/value data types limited in use

Random replica placement destroys locality

Gossip protocol can limit cluster size

R+W > N is NOT more consistent

TCP Incast

Friday, March 8, 13

Key-Value
Conflict Resolution

Forcing clients to resolve consistency issues on read is
a pain for developers

Most end up choosing the server-enforced last-write-
wins policy

With many language clients, logic must be
implemented many times

One solution: https://github.com/bumptech/montage

Another: Make everything immutable

Another: CRDTs
Friday, March 8, 13

https://github.com/bumptech/montage
https://github.com/bumptech/montage

Optimize for Immutability
“Accountants don’t use erasers” - Pat Helland

Eventual consistency is *great* for immutable data

Conflicts become a non-issue if data never changes

don’t need full quorums, vector clocks

backend optimizations are possible

Problem space shifts to distributed GC

... which is very hard, but not the user’s problem
anymore

Friday, March 8, 13

CRDTs
Conflict-free|Commutative Replicated Data Types

A server side structure and conflict-resolution policy for
richer datatypes like counters and sets amenable to
eventual consistency

Letia et al. (2009). CRDTs: Consistency without
concurrency control: http://hal.inria.fr/inria-00397981/
en

Prototype here: http://github.com/basho/riak_dt

Friday, March 8, 13

http://hal.inria.fr/inria-00397981/en
http://hal.inria.fr/inria-00397981/en
http://hal.inria.fr/inria-00397981/en
http://hal.inria.fr/inria-00397981/en
http://github.com/basho/riak_dt
http://github.com/basho/riak_dt

Random Placement and
Locality

By default, keys are randomly placed on different
replicas

But we have buckets!

Containers imply cheap iteration/enumeration, but with
random placement it becomes an expensive full-scan

Partial Solution: hash function defined per-bucket can
increase locality

Lots of work done to minimize impact of bucket listings

Friday, March 8, 13

(R+W>N) != Consistency
R+W described in Dynamo paper as “consistency
knobs”

Some Basho/Riak docs still say this too! :(

Even if R=W=N, sloppy quorums and partial writes
make reading old values possible

“Read your own writes if your writes succeed but
otherwise you have no idea what you’re going to read
consistency (RYOWIWSBOYHNIWYGTRC)” - Joe
Blomstedt

Solution: actual “strong” consistency
Friday, March 8, 13

Strong Consistency in Riak
CAP says you must choose C vs. A, but only during
failures

There’s no reason we can’t implement both models,
with different tradeoffs

Enable strong consistency on a per-bucket basis

See Joe Blomstedt’s talk at RICON 2012: http://
ricon2012.com, earlier work at:
http://github.com/jtuple/riak_zab

Friday, March 8, 13

http://ricon2012.com
http://ricon2012.com
http://ricon2012.com
http://ricon2012.com

An Aside: Probabalistically
Bounded Staleness

Bailis et al. : http://pbs.cs.berkeley.edu

R=W=1, .1ms latency at all hops

Friday, March 8, 13

http://pbs.cs.berkeley.edu
http://pbs.cs.berkeley.edu

TCP Incast
“You can’t pour two buckets of manure into one
bucket” - Scott Fritchie’s Grandfather

“microbursts” of traffic sent to one cluster member

Coordinator sends request to three replicas

All respond with large-ish result at roughly the same
time

Switch has to either buffer or drop packets

Cassandra tries to mitigate: 1 replica sends data,
others send hashes. We should do this in Riak.

Friday, March 8, 13

What Riak Did Differently
(or wrong)

Screwed up vector clock implementation

Actor IDs in vector clocks were client ids, therefore
potentially unbounded

Size explosion resulted in huge objects, caused
OOM crashes

Vector clock pruning resulted in false siblings

Fixed by forwarding to node in preflist circa 1.0

Friday, March 8, 13

What Riak Did Differently

No active anti-entropy until v1.3

Early versions had slow, unstable AAE

Node loss required reading all objects and
repopulating replicas via read repair

Ok for objects that are read often

Rarely-read objects N value decreases over time

Friday, March 8, 13

What Riak Did Differently

Initial versions had an unavailability window during
topology changes

Nodes would claim partitions immediately, before
data had been handed off

New versions don’t change request preflist until all
data has been handed off

Implemented as 2PC-ish commit over gossip

Friday, March 8, 13

Riak, Beyond Dynamo
MapReduce

Search

Secondary Indexes

Pre/post-commit hooks

Multi-DC replication

Riak Pipe distributed computation

Riak CS

Friday, March 8, 13

Riak CS

Amazon S3 clone implemented as a proxy in front of
Riak

Handles eventual consistency issues, object chunking,
multitenancy, and API for a much narrower use case

Forced us to eat our own dogfood and get serious
about fixing long-standing warts

Drives feature development

Friday, March 8, 13

Riak the Product vs.
Dynamo the Service

Dynamo had luxury of being a service while Riak is a
product

Screwing things up with Riak can not be fixed with
an emergency deploy

Multiple platforms, packaging are challenges

Testing distributed systems is another talk entirely
(QuickCheck FTW)

http://www.erlang-factory.com/upload/presentations/514/
TestFirstConstructionDistributedSystems.pdf

Friday, March 8, 13

http://www.erlang-factory.com/upload/presentations/514/TestFirstConstructionDistributedSystems.pdf
http://www.erlang-factory.com/upload/presentations/514/TestFirstConstructionDistributedSystems.pdf
http://www.erlang-factory.com/upload/presentations/514/TestFirstConstructionDistributedSystems.pdf
http://www.erlang-factory.com/upload/presentations/514/TestFirstConstructionDistributedSystems.pdf

Riak Core
Some of our best work!

Dynamo abstracted

Implements all Dynamo techniques without prescribing
a use case

Examples of Riak Core apps:

Riak KV!

Riak Search

Riak Pipe
Friday, March 8, 13

Riak Core

Production deployments

OpenX: several 100+-node clusters of custom Riak
Core systems

StackMob: proxy for mobile services implemented
with Riak Core

Needs to be much easier to use and better
documented

Friday, March 8, 13

Multi-Datacenter Replication
Intra-cluster replication in Riak is optimized for
consistently low latency, high throughput

WAN replication needs to deal with lossy links, long fat
networks, TCP oddities

MDC replication has 2 phases: full-sync (per-partition
merkle comparisons), real-time (asynchronous, driven
by post-commit hook)

Separate policies settable per-bucket

Friday, March 8, 13

Erlang

Still the best language for this stuff, but

We mix data and control messages over Erlang
message passing. Switch to TCP (or uTP/UDT) for
data

NIFs are problematic

VM tuning can be a dark art

~90 public repos of mostly-Erlang, mostly-awesome
open source: https://github.com/basho

Friday, March 8, 13

https://github.com/basho
https://github.com/basho

Other Future Directions

Security was not a factor in Dynamo’s or Riak’s design

Isolating Riak increases operational complexity, cost

Statically sized ring is a pain

Explore possibilities with smarter clients

Support larger clusters

Multitenancy, tenant isolation

More vertical products like Riak CS

Friday, March 8, 13

Questions?
@argv0

http://www.basho.com
http://github.com/basho
http://docs.basho.com

Friday, March 8, 13

mailto:andy@basho.com
mailto:andy@basho.com
http://github.com/basho
http://github.com/basho
http://docs.basho.com
http://docs.basho.com

