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Why Finance Industry should care ¢

We care because of

Compliance requirements

Risk Management

Pricing

Rise of Machines (Ecommerce)
Cost Cutting

BTW: Twitter is also part of Market Data



Sample Interest Model / Simulations
EE

dr = k(r; — r,)dt + o * dw,



A quick Monte Carlo Demo

Demo — Computing this is functional
Some Terminology

PV = present value = Cash flows discounted to
current time

Delta = change in price / change in interest rate

Gamma .. Vega .. Rho .. Theta .. Vanna .... And
other Greeks



Monte Carlo Simulations -Results

0 <results> = func<l,jk......
o1 Parallelize computation with mappers
1 Save results and run reducers

0 [[ trade: 1 curveid: Orig PV:100 Delta:200]{ to OLAP}
.[ trade: 1 curveid: Sim1 PV:100 Delta:200] {big data}

.[trade: T curveid: Sim2 PV:99 Delta:220]{big data} ] ]



Compliance

Dodd-Frank requires >= five years records
Fast Disaster recovery requirements (Tapes backup not acceptable)
All Bloomberg and other chats to be saves in quick reportable form

... Many more in Basel 3 and Dodd Frank Act
You need to

# get chats for and

# from the 5 years Bloomberg and Reuters log of a global investment bank
of 1TB(assume 1MB/Day/Trader * 220 trading days * 1000 traders* 5
years)

# for all EURUSD swaps only

..... Additional filters and aggregation requirements



Big Data Industry History: Google’s Papers
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Google’s Big Data Papers: 2003 — 2006
S

GFS — Google File BigTable

System

MapReduce

* 2003 * 2004 * 2006

* Distributed file * Input 2 Map 2 * Distributed Key-
system Partition = Value column-

* 3 x copies Compare = family based

« Commodity Shuffle = Sort 2 database
machines Reduce = Output

* Colossus (2012)
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Hadoop Distributed File System (HDFS)

Storing & Querying Big Data in

Hadoop Distributed File System ( HDFS )
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node’s local data set
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Data is chopped
and stored on the
HDFS — Hadoop
Distributed File

System

Data in the HDFS
is scattered over

= numerous nodes

for builtin fault
tolerance

Designed by Sri Prakash, November 2012

HDFS has one
master/name
node and
numerous
slave/data nodes

Name node
stores meta data
and data nodes
store data blocks

O
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data Nodes
reside on
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Each node/server
offers local
storage and
computation

http://ecomcanada.files.wordpress.com/2012/11 /hadoop-architecture.png




Google’s MapReduce Programming Model
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Apache Hbase: Column Family Distributed K-V Store
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Google’s Big Data Papers 2: 2010 - now

*2010

*Incremental update/
compute

* built on BigTable

* Adds transactions, locks,
notifications

*SPFs: “Stream Processing

Frameworks” + underlying
database

| S distributed stream Apach
YAHOO' 4computing platform i;agcuebg of

y Distributed and fault-tolerant realtime computation

*2010

*Online analytics and
visualization

*SQL like language for
structured data

*Each row is JSON object —
in protobuf format
*Column based

*Spanner (2012),
BigQuery, F1

Apache Drill [pEw

cloudera B

ST UT Y Tez/Stinger
Hortonworks

*2010

*Scalable graph computing

*Worker threads = nodes
- parallel “superstep” >

messages = nodes 2>

Aggregator/Combiners

(global statistics)

*PageRank, shortest path,

bipartite matching

Apache Giraph

Apache
incubator

Microsoft
Trinity




Unstructured Data: Index /Search Engine

Github Code Search: 17 TB



Apache Lucene/SOLR
o

1 Open Source Indexing
and Search Engine
1 4,000+ Enterprise users
IBM, HP, Cisco
Apple, Linkedin
Wikipedia
CNet, Sky

Twitter




What’s Next for Hadoop? Real-time!

]
| Background  Nathan Marz

Backtype, Storm, and Twitter

http://www.manning.com/marz/

http://storm-project.net/




Some more use cases

Save money to save your jobs
Save money to your firm can do more
E Commerce is norm...

Market sentiment analysis cannot be relied on using

“Bloomberg's sentiment analysis” only

.. Add some more



“Lambda Architecture” — Nathan Marz, BackType /Twitter

query = func (datq, ...)



Lambda Architecture : query = func (data, ...)

Batch Layer (Hadoop) Servicing Layer
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Online resources and alternative stacks

O — Free e-book on Data Science with R under Creative
Commons Licenses

m (Open Source: Mesos — cluster management, Spark /Streaming
— cluster computing, Shark-SQL/DW)

T Learning Statistics with R,

7 Nathan Marz (BackType, acquired by Twitter)
1 Open source clustered Lucene: used by GitHub (17 TB code)



Distributed Computing System: CAP Theorem
N

Partitionability

Consistency

* all nodes see the same data at
the same time

Availability

* a guarantee that every request
ARPACHE .
HBHSE Cassandra receives a response about
whether it was successful or
failed

Partition tolerance

* the system continues to operate
despite arbitrary message loss
or failure of part of the system

2
9
§.
ORACLE §

BERKELEY DB https:/ /github.com /thinkaurelius /titan /wiki /Storage-Backend-Overview
http://en.wikipedia.org/wiki/CAP theorem
http://www.infog.com/articles/cap-twelve-years-later-how-the-rules-have-changed




“Lambda Architecture”: Enterprise Data

4 )
* Data size * Speed of change
* Retention granular * Speed of reaction
level...
. J
4 )
* Data sources Quality of data
* Data formats (./ * Ways to improve
semi-/non- data quality
structured...) * Discover hidden
J L business insights
. J




“Lambda Architecture” — Nathan Marz, BackType /Twitter

-1 Design Principle:
1 Human fault-tolerance
o Immutability

o Pre-computation

1 Lambda Architecture: arcn B dee by ot

represented in the baich views

o Batch Layer
o Serving Layer

o Speed Layer

11 Technology Stack I
o Apache Hadoop /HBase /Clout

o Twitter Storm



