
The Power of Abstraction 

Barbara Liskov 

March 2013 

MIT CSAIL 



Software is Complex 

 Systems are big 

 and they do complicated things 

 and they may be distributed and/or 
concurrent 



Addressing Complexity 

 Algorithms, data structures, protocols 



Addressing Complexity 

 Algorithms, data structures, protocols 

 

 Programming methodology 

 Programming languages 



This Talk 

 Programming methodology as it 
developed 

 Programming languages 

 Programming languages today 



The Situation in 1970 

 The software crisis! 



Programming Methodology 

 How should programs be designed? 

 How should programs be structured? 



The Landscape 

 E. W. Dijkstra. Go To Statement 
Considered Harmful. Cacm, Mar. 1968 



The Landscape 

 N. Wirth. Program Development by 
Stepwise Refinement. Cacm, April 1971 



The Landscape 

 D. L. Parnas. Information Distribution 
Aspects of Design Methodology. IFIP 
Congress, 1971 

 

 “The connections between modules are 
the assumptions which the modules 
make about each other.” 
 
 



Modularity 

 A program is a collection of modules 

 



Modularity 

 A program is a collection of modules 

 Each module has an interface, 
described by a specification 

 



Modularity 

 A program is a collection of modules 

 Each has an interface, described by a 
specification 

 A module’s implementation is correct if it 
meets the specification 

 A using module depends only on the 
specification 

 



Modularity 

 A program is a collection of modules 

 Each has an interface, described by a 
specification 

 A module’s implementation is correct if it 
meets the specification 

 A using module depends only on the 
specification 

 E.g. a sort routine sort(a) 

 



Benefits of Modularity  

 Local reasoning 

 Modifiability 

 Independent development 



The Situation in 1970 

 Procedures were the only type of 
module 

 Not powerful enough, e.g., a file system 

 Not used very much 

 Complicated connections 



Partitions 

 B. Liskov. A Design Methodology for 
Reliable Software Systems. FJCC, Dec. 
1972 

 



Partitions  

Partition state 

op1  op2  op3 



From Partitions to ADTs 

 How can these ideas be applied to 
building programs? 



Idea 

 Connect partitions to data types 



Meeting in Savanah 

 ACM Sigplan-Sigops interface meeting. 
April 1973. (Sigplan Notices, Sept. 
1973) 

 Started to work with Steve Zilles 



The Landscape 

 Extensible Languages 

 S. Schuman and P. Jourrand. Definition 
Mechanisms in Extensible Programming 
Languages. AFIPS. 1970 

 R. Balzer. Dataless Programming. AFIPS. 
1967 

 

 



The Landscape 

 O-J. Dahl and C.A.R. Hoare. Hierarchical 
Program Structures. Structured 
Programming, Academic Press, 1972 



The Landscape 

 J. H. Morris. Protection in Programming 
Languages. Cacm. Jan. 1973 



Abstract Data Types 

 B. Liskov and S. Zilles. Programming 
with Abstract Data Types. ACM Sigplan 
Conference on Very High Level 
Languages.  April 1974 

 

 

 

 



What that paper proposed 

 Abstract data types 

 A set of operations 

 And a set of objects 

 The operations provide the only way to use 
the objects 

 A sketch of a programming language 



From ADTs to CLU 

 Participants 

 Russ Atkinson 

 Craig Schaffert 

 Alan Snyder 





Why a Programming 
Language? 

 Communicating to programmers 

 Do ADTs work in practice? 

 Getting a precise definition 

 Achieving reasonable performance 



Some Facts about CLU 

 Static type checking 

 Heap-based 

 Separate compilation 

 No concurrency, no gotos, no 
inheritance 



CLU Mechanisms 

 Clusters 

 Polymorphism 

 Iterators  

 Exception handling 



Clusters 

IntSet = cluster is create, insert, delete, … 
   % representation for IntSet objects 
   % implementation of the operations 
end IntSet 

 
 

 



Clusters 

IntSet = cluster is create, insert, delete, … 
   % representation for IntSet objects 
   % implementation of the operations 
end IntSet 

 
 

IntSet s = IntSet$create( ) 
IntSet$insert(s, 3) 



Polymorphism 

Set = cluster[T: type] is create, insert, … 

  % representation for Set object 

  % implementation of Set operations    

end Set 

 

Set[int] s := Set[int]$create( ) 

Set[int]$insert(s, 3) 

 



Polymorphism 

Set = cluster[T: type] is create, insert, … 

   where T has equal: proctype(T, T)  

       returns (bool) 

      

 

 



Iterators 

 For all x in C do S 



Iterators 

 For all x in C do S 

 Destroy the collection? 

 Complicate the abstraction? 

 



Visit to CMU 

 Bill Wulf and Mary Shaw, Alphard 

 Generators  



Iterators 

sum: int := 0 

for e: int in Set[int]$members(s) do 

   sum := sum + e 

   end 

 



Also 

 Exception handling 

 Strong specifications, e.g., IntSet$choose 

 First class Procedures and Iterators 



After CLU 

 Argus and distributed computing 

 Programming methodology 

 Modular program design 

 Reasoning about correctness 

 Type hierarchy 

 



From CLU to Object-Oriented 
Programming 

 SmallTalk provided inheritance 



The Landscape 

 Inheritance was used for: 

 Implementation 

 Type hierarchy 



Type Hierarchy 

 Wasn’t well understood 

 E.g., stacks vs. queues 

 



The Liskov Substitution 
Principle (LSP) 

 Objects of subtypes should behave like 
those of supertypes if used via 
supertype methods 

 

 B. Liskov. Data abstraction and 
hierarchy. Sigplan notices, May 1988 



What Next? 

 Modularity based on abstraction is the 
way things are done 



Programming Languages 
Today 

 Languages for experts, e.g., Java, C# 



Programming 1A 

 E.g., Python  



Challenges 

 A programming language for novices 
and experts 

 Ease of use vs. expressive power 

 Readability vs. writeability 

 Modularity and encapsulation 

 Powerful abstraction mechanisms 

 State matters 



Challenges 

 Massively-parallel computers 

 Programming methodology 

 Programming language support 



The Power of Abstraction 

Barbara Liskov 

March 2013 

MIT CSAIL 


