Enabling Java In
Low Latency
and
Low Jitter

Applications

Gil Tene, CTO & co-Founder, Azul Systems

Session # 8206

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

High level agenda

High level agenda

@ Intro, jitter vs. JITTER

High level agenda

@ Intro, jitter vs. JITTER

@ Java in a low latency application world

High level agenda

@ Intro, jitter vs. JITTER

@ Java in a low latency application world

@ The (historical) fundamental problems

High level agenda

@ Intro, jitter vs. JITTER

@ Java in a low latency application world

@ The (historical) fundamental problems

@ What people have done to fry to get around them

High level agenda

@ Intro, jitter vs. JITTER

@ Java in a low latency application world
@ The (historical) fundamental problems

@ What people have done to fry to get around them

® What if the fundamental problems were eliminated?

High level agenda

@ Intro, jitter vs. JITTER

@ Java in a low latency application world
@ The (historical) fundamental problems
@ What people have done to fry to get around them

® What if the fundamental problems were eliminated?

® What 2013 looks like for Low latency Java developers

This is Jitter:

Simulated jitter

w
o

[
N

N
Q

-
o

Delay (milliseconds)
o

1000 1500

Packet sequence number

AZUL

SYSTEMS
©2012 Azul Systems, Inc.

torsdag den 7. marts 13

Is “jitter” a proper word for this?

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

N
(92

N
o

[HY
U

[HY
o
]

o
U
2]

E
c

O
5
©
S
>

o
Q.
>
L

2

L

0a)
]

300 400
Elapsed Time (sec)

AZUL

SYSTEMS

©2012 Azul Systems, Inc.

torsdag den 7. marts 13

Is “jitter” a proper word for this?

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

N
(92

N
o

[HY
U

[HY
o
]

o
U
2]

E
c

O
5
©
S
>

o
Q.
>
L

2

L

0a)
]

300 400
Elapsed Time (sec)

99%'ile is ~60 usec

©2012 Azul Systems, Inc.

AZUL

SYSTEMS

torsdag den 7. marts 13

c 4 PlIope JI C

Hiccups by Time Interval

—Max per Interval ===99% *===99.90% ===99.99%

eMax

N
(92

N
o

[HY
U

Hiccup Duration (msec)
I
o

5 -
O I T T T = i Y T T !
0 100 200 300 1400 500 600
Elapsed Time (sec) ;
: ‘ 0,000¥%
S1s f ~ ° ' ~
ONE DICO

©20 A

torsdag den 7. marts 13

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

About me: Gil Tene

@ co-founder, CTO
@Azul Systems

About me: Gil Tene

@ co-founder, CTO
@Azul Systems

® Have been working on
a “think different” GC

approaches since 2002

About me: Gil Tene

@ co-founder, CTO
@Azul Systems

@ Have been working on
a “think different” GC
approaches since 2002

* working on real-world trash compaction issues, circa 2004

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

About me: Gil Tene

@ co-founder, CTO
@Azul Systems

@ Have been working on
a “think different” GC
approaches since 2002

® Created Pauseless & C4

core GC algorithms
(Tene, Wolf)

* working on real-world trash compaction issues, circa 2004

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

About me: Gil Tene

@ co-founder, CTO
@Azul Systems

@ Have been working on
a “think different” GC
approaches since 2002

® Created Pauseless & C4

core GC algorithms
(Tene, Wolf)

@ A Long history building
Virtual & Physical
Machines, Operating

Systems, Enterprise
apps €'|'C ¥ working on real-world trash compaction issues, circa 2004
, X X))

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

About Azul

AZUL

SYSTEMS
©2011 Azul Systems, Inc.

torsdag den 7. marts 13

About Azul

@ We make scalable Virtual
Machines

AZUL

SYSTEMS
©2011 Azul Systems, Inc.

torsdag den 7. marts 13

About Azul

@ We make scalable Virtual
Machines

& Have built “whatever it takes
to get job done” since 2002

SSSSSSS

torsdag den 7. marts 13

About Azul

@ We make scalable Virtual
Machines

& Have built “whatever it takes
to get job done” since 2002

@ 3 generations of custom SMP
Multi-core HW (Vega)

SSSSSSS

torsdag den 7. marts 13

About Azul

@ We make scalable Virtual
Machines

& Have built “whatever it takes
to get job done” since 2002

@ 3 generations of custom SMP
Multi-core HW (Vega)

FEEE XX
3 h

b

bl St b S
XXX TR TXXK

©2011 Azul Systems, Inc. SYSTEMS

torsdag den 7. marts 13

About Azul

® We make scalable Virtual AR gy Ve
Machines

& Have built "whatever it takes

b
to get job done” since 2002 a8
@ 3 generations of custom SMP
Multi-core HW (Vega)
AEYL

torsdag den 7. marts 13

About Azul

@ We make scalable Virtual a ﬂ & vg
: . 9/ b » @/ 55
Machines o X
ffffff L] =
=% &
@ Have built "whatever it takes one’s
to get job done” since 2002
@ 3 generations of custom SMP
Multi-core HW (Vega)
& Now Pure software for
commodity x86 (Zing)
AZUL

SYSTEMS
1 Azul Systems, Inc

©201 , Inc.
torsdag den 7. marts 13

About Azul

@ We make scalable Virtual
Machines

& Have built “whatever it takes
to get job done” since 2002

@ 3 generations of custom SMP
Multi-core HW (Vega)

@ Now Pure software for
commodity x86 (Zing)

AMD

Opteron

Xeon' 64 G)

Inside™ —

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

About Azul

@ We make scalable Virtual
Machines

& Have built “whatever it takes
to get job done” since 2002

@ 3 generations of custom SMP
Multi-core HW (Vega)

@ Now Pure software for
commodity x86 (Zing)

@ Known for Low Latency,
Consistent execution, and
Large data set excellence

AMD

Opteron

&P

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

Java in the low latency world

Java in a low latency world

Java in a low latency world

® Why do people use Java for low latency apps?

Java in a low latency world

® Why do people use Java for low latency apps?

@ Are they crazy?

Java in a low latency world

® Why do people use Java for low latency apps?

@ Are they crazy?

@ No. There are good, easy to articulate reasons

Java in a low latency world

® Why do people use Java for low latency apps?
@ Are they crazy?

@ No. There are good, easy to articulate reasons

@ Projected lifetime cost

Java in a low latency world

® Why do people use Java for low latency apps?
@ Are they crazy?
@ No. There are good, easy to articulate reasons

@ Projected lifetime cost

@ Developer productivity

Java in a low latency world

@ Why do people use Java for low latency apps?
@ Are they crazy?

@ No. There are good, easy to articulate reasons
@ Projected lifetime cost

@ Developer productivity

@ Time-to-product, Time-to-market, ...

Java in a low latency world

@ Why do people use Java for low latency apps?
@ Are they crazy?

@ No. There are good, easy to articulate reasons
@ Projected lifetime cost

@ Developer productivity

@ Time-to-product, Time-to-market, ...

@ Leverage, ecosystem, ability to hire

E.g. Customer answer fto:
"Why do you use Java in Algo Trading?”

E.g. Customer answer fto:
"Why do you use Java in Algo Trading?”

@ Strategies have a shelf life

E.g. Customer answer fto:
"Why do you use Java in Algo Trading?”

@ Strategies have a shelf life

@ We have to keep developing and deploying new ones

E.g. Customer answer fto:
"Why do you use Java in Algo Trading?”

@ Strategies have a shelf life

@ We have to keep developing and deploying new ones

@ Only one out of N is actually productive

E.g. Customer answer fto:
"Why do you use Java in Algo Trading?”

@ Strategies have a shelf life
@ We have to keep developing and deploying new ones

@ Only one out of N is actually productive

@ Profitability therefore depends on ability to
successfully deploy new strategies, and on the cost
of doing so

E.g. Customer answer fto:
"Why do you use Java in Algo Trading?”

@ Strategies have a shelf life
@ We have to keep developing and deploying new ones
@ Only one out of N is actually productive

@ Profitability therefore depends on ability to
successfully deploy new strategies, and on the cost
of doing so

@ Our developers seem to be able to produce 2x-3x as
much when using a Java environment as they would
with C++ ..

So what is the problem?
Is Java Slow?

So what is the problem?
Is Java Slow?

@ No

So what is the problem?
Is Java Slow?

@ No

@ A good programmer will get roughly the same speed
from both Java and C++

So what is the problem?
Is Java Slow?

@ No

@ A good programmer will get roughly the same speed
from both Java and C++

@ A bad programmer wont get you fast code on either

So what is the problem?
Is Java Slow?

@ No

@ A good programmer will get roughly the same speed
from both Java and C++

@ A bad programmer wont get you fast code on either

@ The 50% ile and 90%'ile are typically excellent...

So what is the problem?
Is Java Slow?

@ No

@ A good programmer will get roughly the same speed
from both Java and C++

@ A bad programmer wont get you fast code on either

@ The 50% ile and 90%'ile are typically excellent...

@ Its those pesky occasional stutters and stammers
and stalls that are the problem...

So what is the problem?
Is Java Slow?

@ No

@ A good programmer will get roughly the same speed
from both Java and C++

@ A bad programmer wont get you fast code on either
@ The 50% ile and 90%'ile are typically excellent...

@ Its those pesky occasional stutters and stammers
and stalls that are the problem...

@ Ever hear of Garbage Collection?

Java’s achilles heel

Stop-The-World Garbage Collection:
How bad is it?

Stop-The-World Garbage Collection:
How bad is it?

@ Lets ignore the bad multi-second pauses for now...

Stop-The-World Garbage Collection:
How bad is it?

@ Lets ignore the bad multi-second pauses for now...

@ Low latency applications regularly experience “small”,
"minor” GC events that range in the 10s of msec

Stop-The-World Garbage Collection:
How bad is it?

@ Lets ignore the bad multi-second pauses for now...

@ Low latency applications regularly experience “small”,
"minor” GC events that range in the 10s of msec

@ Frequency directly related to allocation rate

Stop-The-World Garbage Collection:
How bad is it?

@ Lets ignore the bad multi-second pauses for now...

@ Low latency applications regularly experience “small”,
"minor” GC events that range in the 10s of msec

@ Frequency directly related to allocation rate

@ In turn, directly related to throughput

Stop-The-World Garbage Collection:
How bad is it?

@ Lets ignore the bad multi-second pauses for now...

@ Low latency applications regularly experience “small”,
"minor” GC events that range in the 10s of msec

@ Frequency directly related to allocation rate

@ In turn, directly related to throughput

@ So we have great 50%, 90%. Maybe even 99%

Stop-The-World Garbage Collection:
How bad is it?

@ Lets ignore the bad multi-second pauses for now...

@ Low latency applications regularly experience “small”,
"minor” GC events that range in the 10s of msec

@ Frequency directly related to allocation rate
@ In turn, directly related to throughput
@ So we have great 50%, 90%. Maybe even 99%

@ But 99.9%, 99.99%, Max, all “suck”

Stop-The-World Garbage Collection:
How bad is it?

@ Lets ignore the bad multi-second pauses for now...

@ Low latency applications regularly experience “small”,
"minor” GC events that range in the 10s of msec

@ Frequency directly related to allocation rate

@ In turn, directly related to throughput

@ So we have great 50%, 90%. Maybe even 99%
@ But 99.9%, 99.99%, Max, all “suck”

® So bad that it affects risk, profitability, service
expectations, etc.

Hiccups by Time Interval

—Max per Interval ===99% *===99.90% ===99.99%

eMax

N
(92

N
o

[HY
U

Hiccup Duration (msec)
I
o

5 -
O I T T T = i Y T T !
0 100 200 300 1400 500 600
Elapsed Time (sec) ;
: ‘ 0,000¥%
S1s f ~ ° ' ~
ONE DICO

©20 A

torsdag den 7. marts 13

One way to deal with Stop-The-World GC

One way to deal with Stop-The-World GC

torsdag den 7. marts 13

A way to deal with Stop-The-World GC

Another way to cope: "Creative Language”

Another way to cope: "Creative Language”

® “Guarantee a worst case of 5 msec, 99% of the time”

Another way to cope: "Creative Language”
® “Guarantee a worst case of 5 msec, 99% of the time”

@ "Mostly” Concurrent, "Mostly” Incremental

Translation: "Will at times exhibit long monolithic stop-
the-world pauses”

Another way to cope: "Creative Language”
® “Guarantee a worst case of 5 msec, 99% of the time”

@ "Mostly” Concurrent, "Mostly” Incremental

Translation: "Will at times exhibit long monolithic stop-
the-world pauses”

@ "Fairly Consistent”

Translation: “"Will sometimes show results well outside
this range”

Another way to cope: "Creative Language”
® “Guarantee a worst case of 5 msec, 99% of the time”

@ "Mostly” Concurrent, "Mostly” Incremental

Translation: "Will at times exhibit long monolithic stop-
the-world pauses”

@ "Fairly Consistent”

Translation: “"Will sometimes show results well outside
this range”

@ "Typical pauses in the tens of milliseconds”

Translation: "Some pauses are much longer than tens of
milliseconds”

What do actual low latency developers
do about it?

What do actual low latency developers
do about it?

@ They use "Java” instead of Java

What do actual low latency developers
do about it?

@ They use "Java” instead of Java

@ They write "in the Java syntax”

What do actual low latency developers
do about it?

@ They use "Java” instead of Java

@ They write "in the Java syntax”

@ They avoid allocation as much as possible

What do actual low latency developers
do about it?

@ They use "Java” instead of Java
@ They write "in the Java syntax”

@ They avoid allocation as much as possible

@ E.g. They build their own object pools for everything

What do actual low latency developers
do about it?

@ They use "Java” instead of Java
@ They write "in the Java syntax”
@ They avoid allocation as much as possible

@ E.g. They build their own object pools for everything

@ They write all the code they use (no 3rd party
libraries)

What do actual low latency developers
do about it?

@ They use "Java” instead of Java

® They write “in the Java syntax”

@ They avoid allocation as much as possible

@ E.g. They build their own object pools for everything

@ They write all the code they use (no 3rd party
libraries)

@ They train developers for their local discipline

What do actual low latency developers
do about it?

@ They use "Java” instead of Java

® They write “in the Java syntax”

@ They avoid allocation as much as possible

@ E.g. They build their own object pools for everything

@ They write all the code they use (no 3rd party
libraries)

@ They train developers for their local discipline

@ In short: They revert to many of the practices that
hurt productivity. They loose out on much of Java.

What do actual low latency developers
do about it?

@ They use "Java” instead of Java

® They write “in the Java syntax”

@ They avoid allocation as much as possible

@ E.g. They build their own object pools for everything

@ They write all the code they use (no 3rd party
libraries)

@ They train developers for their local discipline

@ In short: They revert to many of the practices that
hurt productivity. They loose out on much of Java.

What do low latency (Java) developers
get for all their effort?

What do low latency (Java) developers
get for all their effort?

@ They still see pauses (usually ranging to tens of msec)

What do low latency (Java) developers
get for all their effort?

@ They still see pauses (usually ranging to tens of msec)

@ But they get fewer (as in less frequent) pauses

What do low latency (Java) developers
get for all their effort?

@ They still see pauses (usually ranging to tens of msec)

@ But they get fewer (as in less frequent) pauses

@ And they see fewer people able to do the job

What do low latency (Java) developers
get for all their effort?

@ They still see pauses (usually ranging to tens of msec)
@ But they get fewer (as in less frequent) pauses

@ And they see fewer people able to do the job

@ And they have to write EVERY THING themselves

What do low latency (Java) developers
get for all their effort?

@ They still see pauses (usually ranging to tens of msec)
@ But they get fewer (as in less frequent) pauses

@ And they see fewer people able to do the job

@ And they have to write EVERY THING themselves

@ And they get to debug malloc/free patterns again

What do low latency (Java) developers
get for all their effort?

@ They still see pauses (usually ranging to tens of msec)
@ But they get fewer (as in less frequent) pauses

@ And they see fewer people able to do the job

@ And they have to write EVERY THING themselves

@ And they get to debug malloc/free patterns again

D ..

What do low latency (Java) developers
get for all their effort?

@ They still see pauses (usually ranging to tens of msec)
@ But they get fewer (as in less frequent) pauses

@ And they see fewer people able to do the job

@ And they have to write EVERY THING themselves

@ And they get to debug malloc/free patterns again

D ..

@ Some call it "fun”... Others "duct tape engineering”...

There is a fundamental problem

Stop-The-World GC mechanisms
are contradictory to the
fundamental requirements of
low latency & low jitter apps

The common GC behavior across ALL
currently shipping (non-Zing) JVMs

The common GC behavior across ALL
currently shipping (non-Zing) JVMs

@ ALL use a Monolithic Stop-the-world NewGen

o “small” periodic pauses (small as in 10s of msec)

@ pauses more frequent with higher throughput or allocation rates

The common GC behavior across ALL
currently shipping (non-Zing) JVMs

@ ALL use a Monolithic Stop-the-world NewGen

o “small” periodic pauses (small as in 10s of msec)

@ pauses more frequent with higher throughput or allocation rates

® Development focus for ALL is on Oldgen collectors

@ When they say "mostly concurrent”, or “mostly incremental”, or
"pause target”, they refer only to the OldGen part of the collector

@ Focus is on frying to address the many-second pause problem

@ Usually by sweeping it farther and farther the rug

©2011 Azul Systems, Inc.
torsdag den 7. marts 13

The common GC behavior across ALL
currently shipping (non-Zing) JVMs

@ ALL use a Monolithic Stop-the-world NewGen

o “small” periodic pauses (small as in 10s of msec)

@ pauses more frequent with higher throughput or allocation rates

® Development focus for ALL is on Oldgen collectors

@ When they say "mostly concurrent”, or “mostly incremental”, or
"pause target”, they refer only to the OldGen part of the collector

@ Focus is on frying to address the many-second pause problem

@ Usually by sweeping it farther and farther the rug

@ ALL use a Fallback to Full Stop-the-world Collection

@ Used for dealing with the inevitable pile of dust under the rug
@ Used to recover when other mechanisms fail

@ Hidden under the term “"Mostly”...

Sustainable Throughput:
The throughput achieved while
safely maintaining service levels

Sustainable Throughput:
The throughput achieved while

safely maintaining service levels
oy . |) v

e h 0 . L S5 2 4 -~ Qg A
Ty o -~ t ‘ 4] E[‘.: -& Pﬂ,

-
e — .-QJ

|4 - 4
L N Y,

©2011 Azul Syste

torsdag den 7. marts 13

Sustainable Throughput:
The throughput achieved while
safely maintaining service levels

'

e I »)

o T ‘- » .\ '-,) \ _ A i,
el [R Y

= —

AN .-

©2011 Azul Syste

torsdag den 7. marts 13

At Azul, STW-GC was addressed head-on

At Azul, STW-GC was addressed head-on

® We decided to focus on the right core problems

At Azul, STW-GC was addressed head-on

® We decided to focus on the right core problems

@ Scale & productivity being limited by responsiveness

At Azul, STW-GC was addressed head-on

® We decided to focus on the right core problems

@ Scale & productivity being limited by responsiveness

@ Even “short” GC pauses are considered a problem

At Azul, STW-GC was addressed head-on

® We decided to focus on the right core problems
@ Scale & productivity being limited by responsiveness
@ Even “short” GC pauses are considered a problem

® Responsiveness must be unlinked from key metrics:
@ Transaction Rate, Concurrent users, Data set size, efc.
@ Heap size, Live Set size, Allocation rate, Mutation rate
@ Responsiveness must be continually sustainable
o

Cant ignore "rare but periodic” events

©2011 Azul Systems, Inc.
torsdag den 7. marts 13

At Azul, STW-GC was addressed head-on

® We decided to focus on the right core problems
@ Scale & productivity being limited by responsiveness
@ Even “short” GC pauses are considered a problem

® Responsiveness must be unlinked from key metrics:

@ Transaction Rate, Concurrent users, Data set size, efc.
@ Heap size, Live Set size, Allocation rate, Mutation rate
@ Responsiveness must be continually sustainable
o

Cant ignore "rare but periodic” events

@ Eliminate ALL Stop-The-World Fallbacks
@ Any STW fallback is a real-world failure

©2011 Azul Systems, Inc.
torsdag den 7. marts 13

At Azul, STW-GC was addressed head-on

® We decided to focus on the right core problems
@ Scale & productivity being limited by responsiveness
@ Even “short” GC pauses are considered a problem

® Responsiveness must be unlinked from key metrics:
@ Transaction Rate, Concurrent users, Data set size, efc.
Heap size, Live Set size, Allocation rate, Mutation rate

o
@ Responsiveness must be continually sustainable
@

Can’r |gnore “rare bu’r eriodic" even’rs

@ Ellmlna’re ALL S’rop—The-World Fallbacks
M, @ Any STW fallback is a real-world failure

: . Y e T T S S it L e N Nty o & Ay o e ¢ 88 ST =
©2011 Azul Systems, Inc. ’ BE— ,f o - Lo s T b - - '(: AT PO T e s ‘
torsdag den 7. marts 13

The Zing "C4” Collector

Continuously Concurrent Compacting Collector

The Zing "C4” Collector

Continuously Concurrent Compacting Collector

@ Concurrent, compacting old generation

The Zing "C4” Collector

Continuously Concurrent Compacting Collector

@ Concurrent, compacting old generation

The Zing "C4” Collector

Continuously Concurrent Compacting Collector

@ Concurrent, compacting old generation

@ Concurrent, compacting new generation

The Zing "C4” Collector

Continuously Concurrent Compacting Collector

@ Concurrent, compacting old generation

@ Concurrent, compacting new generation

The Zing "C4” Collector

Continuously Concurrent Compacting Collector

@ Concurrent, compacting old generation
@ Concurrent, compacting new generation

@ No stop-the-world fallback

@ Always compacts, and always does so concurrently

SSSSSSS

©2011 Azul Systems, Inc.
torsdag den 7. marts 13

The Zing "C4” Collector

Continuously Concurrent Compacting Collector

@ Concurrent, compacting old generation

@ Concurrent, compacting new generation

AZUL

SYSTEMS
©2011 Azul Systems, Inc.

torsdag den 7. marts 13

Benefits

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

An example of "First days run” behavior
E-Commerce application

Azul Systems - Zing LX Garbage Collector Log Analyser - /Users/gil/Downloads/AnonCustomer/Decl1/gc/verbosegc.log

File Edit Help
_ Open MSnapshot Time Range (Minutes): 0.0043363334 3.385084 to 702.0003 722.126 ' SetTime Range < Reset U Select Data | GCLA Heap use: 30% Old GC/min: 0

Heap Usage - New & Old GC Current/Peak/Max * GC and Safepoint - Pause Duration * | App Delays * GC Duration * GC Concurrent Phase Times GC Time Percent * | GC Count *

GC and Safepoint - Pause Duration
0.00550 1

0.00525 4
0.00500
0.00475
0.00450 1
0.00425
0.00400
0.00375 1
0.00350 ¢
0.00325
0.00300 1
0.00275 1
0.00250
0.00225
0.00200 1
0.00175 4
0.00150
0.00125
0.00100 1
0.00075
0.00050
0.00025

0.00000 : : : : : ‘ : : : s ‘ : : —
75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725

Elapsed Time (Minutes)

#- New GC Pause 1 Duration -® New GC Pause 2 Duration New GC Pause 3 Duration -# New GC Pause 4 Duration = Old GC Pause 2 Duration Old GC Pause 3 Duration
Old GC Pause 4 Duration -» Deoptimize Pause -#- Force Safepoint Pause -« Concurrent Deflation Pause - Other Safepoint Pause

AZUL

SYSTEMS
©2011 Azul Systems, Inc.

torsdag den 7. marts 13

An example of behavior after 4 days of system funing
Low latency application

e 0o Azul Systems - Zing LX Garbage Collector Log Analyser - /Users/gil/Downloads/AnonCustomer/LowLatWithSomeTuning/hotspotgc.log
File Edit Graph Help

Open Q) Snapshot Time Range (Minutes) 0.0056 0.0056 to 60.274967 60.274967 Set Time Range) Reset ¥ Select Data @eap use: 20% Old GC/min: 0

| Heap Use - New & Old GC AfterCollection/Peak/Max [cchuu Duration] Process - Application Delays % | GCDuration % | GC Concurrent Phase Times X | GC Time (Percent) % | GC Count x |

GC Pause Duration

0019
0018
0017
0016
0015

0014

0013

0012

0011

0010

L0009

0008

0007

0006

0005

0004

.0003

0002

0001 : : =

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 425 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5

Elapsed Time (Minutes)

& New GC Pause 1 Duration - New GC Pause 2 Duration New GC Pause 3 Duration -+ New GC Pause 4 Duration = Oid GC Pause 1 Duration ¥ Oild GC Pause 2 Duration
Old GC Pause 3 Duration Old GC Pause 4 Duration & Safepoint Pause

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

This is not “just Theory”

JHiccup:
A tool that measures and reports
(as your application is running)
if your JVM is running all the time

Discontinuities in Java platform execution - Easy To Measure

Hiccups by Time Interval

——Max per Interval ===99% ===9990% ====99.99% ===Max

A telco

Hiccup Duration (msec)

a e R R A P P Wi -|- h

400 600 800 1000 1200 1400 1600 1800 b
a bit of a

Elapsed Time (sec)

"problem”

Hiccups by Percentile Distribution

1800

1600 Max=1665.024

p—

& 1400
(7]

n(m
[ERY
N
o
o

99.9% 99.99% 99.999%

=
X

t
=
o
o
o
° |
o
o
o

o

Percentile

AZUL

SYSTEMS
12 Azul Systems, Inc

©20 2
torsdag den 7. marts 13

Discontinuities in Java platform execution - Easy To Measure

Hiccups by Time Interval

——Max per Interval ===99% ===9990% ====99.99% ===Max

Hiccup Duration

A telco
I iGN A A P P Wi -|- h

We call
.I- h e S e 200 400 600 Eﬁg(;sedl-:-)iorze (51;(:))0 1400 1600 1800 a b i .I. O F a

“hiccups” "problem”

Hiccups by Percentile Distribution

1800
1600 Max=1665.024
1400
1200
1000
800

600

Hiccup Duration (msec)

400
200

o

(=]
o

(=]
o

=
X

99.9% 99.99% 99.999%

Percentile

AZUL

SYSTEMS
12 Azul Systems, Inc

©20 2
torsdag den 7. marts 13

Discontinuities in Java platform execution - Easy To Measure

Hiccups by Time Interval

——Max per Interval ===99% ===9990% ====99.99% ===Max

1800
1600

-]

1200 \
e
L
M] A telco

SO A A AR AR :
We call IIII!I!IIlll!lHIlllIIl'llllllllllllllllIIlllllIIIIIllll!llilllllilllili!llﬁlllllllliIllllhill|ll!lliIlllllMIi!‘lﬂﬁli|]llillIllillllllllli|ililillIilllilllillIilI|ﬂllIllllllllllllilllllllllllhllllllilllIlllbllllllilllilllﬂili A PP W ith

.l- h e S e - 0 200 400 600 ;Zisedl_?i(:ze (s].;(:))o 1400 1600 1800 a b i .I- O F a
“hiccups” "problem”

Hiccup Duration (msec)

Hiccups by Percentile Distribution

1800

1600 Max=1665.024

p—

& 1400
(7]

n(m
[ERY
N
o
o

=
X

t
=
o
o
o
° |
o
o
o

o

99.9% 99.99% 99.999%

Percentile

AZUL

SYSTEMS
12 Azul Systems, Inc

©20 2
torsdag den 7. marts 13

Fun with jHiccup

. Charles Nutter headius 20 Jan
\ jHiccup, @AzulSystems' free tool to show you why your JVM sucks

compared to Zing: bit.ly/wsH5A8 (thx @bascule)
L3 Retweeted by Gil Tene

AZUL

12 Azul Systems, Inc SYSTEMS

©20 2
torsdag den 7. marts 13

Oracle HotSpot (pure newgen)

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

1R lIIlIIIIIIlIIIIIIII\IIIII IllllllmI|II'IIII\IIIIJFI1|I1I IIIIIII\II\IlIlIl‘lIII1I\II\

;‘1‘|'I{f|“l‘l‘mll\||ll\lll!lﬂl\lllllﬂﬂl[llhIUMhllﬂllﬂllllﬂlllllllhlmIWW LN RLY
i

100 200 300 400 500 600
Elapsed Time (sec)

Hiccup Duration (msec)

Hiccups by Percentile Distribution

Hiccup Duration (msec)

99.9% 99.99% 99.999%

Percentile

Low latency trading application

SSSSSSS

©2012 Azul Systems, Inc.
torsdag den 7. marts 13

Oracle HotSpot (pure newgen)

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

Hiccup Duration (msec)

Elapsed Time (sec)

Hiccups by Percentile Distribution

300 400
Elapsed Time (sec)

Hiccups by Percentile Distribution

N
o

Max=22.656

=
(5]

Hiccup Duration (msec)

©2012 Azul Systems, Inc.

_——/

/

99.9% 99.99% 99.999%

Percentile

Low latency trading application

torsdag den 7. marts 13

i

99.9% 99.99% 99.999%

Percentile

AZUL

SYSTEMS

Hiccups by Time Interval Hiccups by Time Interval
—Max per Interval ===99% ===99.90% ===99.99% ===Max g TN —Max per Interval ===99% ===99.90% ===99.99% ===Max
25 ¢ 18
| e — 1.6
(S} i (%]
g 20 314
£ £
= . = 12
o 15 = o
5 s e 1
S ., % ﬂ | s £ os |
o 10 i & | A I I | | a | ‘J
Q ' a 0.6
§ lA u § 0.4 |
E 5 , Wy ,..\‘ll | ' :E . I
0.2 /
0 } g T T T T T 1 y | 0 ; T T T T T 1
) 100 200 300 400 500 600 B, 100 200 300 400 500 600
Elapsed Time (sec) ” Elapsed Time (sec)
Hiccups by Percentile Distribution Hiccups by Percentile Distribution

§ / |
0.6
5 / =04 /

0% 90% 99% 99.9% 99.99% 99.999% 0% 90% 99% 99.9% 99.99% 99.999%

Hiccup Duration (msec)

Hiccu

Percentile Percentile

& 1€ A C d AU 4 &

©2012 A e

torsdag den 7. marts 13

Oracle HotSpot (pure newgen)

Hiccups by Time Interval Hiccups by Time Interval

— Max per Interval ===99% ===99.90% ===99.99% ===Max —Max per Interval ==99% ===99.90% ===99.99% ===Max

Hiccup Duration (msec)
Hiccup Duration (msec)

W
300 400
Elapsed Time (sec) Elapsed Time (sec)

Hiccups by Percentile Distribution Hiccups by Percentile Distribution

Max=22.656

N
o

N
o

=
(5]

[uny
(€]

Hiccup Duration (msec)

Hiccup Duration (msec)

Max=1.568
——

r r r y #ﬁ— r
99.9% 99.99% 99.999% 90% 99.9% 99.99% 99.999%

Percentile Percentile

Low latency - Drawn fo scale

SYSTEMS
©2012 Azul Systems, Inc.

AZUL

torsdag den 7. marts 13

Its not just for
Low Latency

Its not just for
Low Latency

Just as easy to demonstrate
for human-response-time

apps

Oracle HotSpot CMS, 1GB in an 8GB heap Zing 5, 1GB in an 8GB heap

Hiccups by Time Interval Hiccups by Time Interval

— Max per Interval ===99% ===99.90% ===99.99% ===Max —Max per Interval ===99% ===99.90% ===99.99% ===Max

Hiccup Duration (msec)

I

M—U————l——ﬁ—

500 1000 1500 2000 2500 3000 3500 1000 1500 2000 2500 3000 3500

Elapsed Time (sec) Elapsed Time (sec)

Hiccup Duration (msec)

Hiccups by Percentile Distribution Hiccups by Percentile Distribution

N
o

Max=20.384

[
S

Hiccup Duration (msec)
Hiccup Duration (msec)

99.9% 99.99% 99.999% 90% 99% 99.9% 99.99% 99.999% 99.9999%

Percentile Percentile

Portal Application, slow Ehcache “churn”

SYSTEMS
©2012 Azul Systems, Inc.

AZUL

torsdag den 7. marts 13

Oracle HotSpot CMS, 1GB in an 8GB heap Zing 5, 1GB in an 8GB heap

Hiccups by Time Interval g N Hiccups by Time Interval

— Max per Interval ===99% ===99.90% ===99.99% ===Max —Max per Interval ===99% ===99.90% ===99.99% ===Max

R e ooy T - . P S
ke B 2

" Hiccup Duration (msec)

500 1000 1500 2000 2500 3000 3500 | 0 1000 1500 2000 2500 3000 3500

Elapsed Time (sec) Elapsed Time (sec)

Hiccups by Percentile Distribution

N

=
S TTTO

Hiccup Duration (msec)

99.9% 99.99% 99.999% 99% 99.9% 99.99% 99.999% 99.9999%

Percentile Percentile

Portal Application, slow Ehcache “churn”

SYSTEMS
©2012 Azul Systems, Inc.

AZUL

torsdag den 7. marts 13

Oracle HotSpot CMS, 1GB in an 8GB heap Zing 5, 1GB in an 8GB heap

Hiccups by Time Interval Hiccups by Time Interval

— Max per Interval ===99% ===99.90% ===99.99% ===Max —Max per Interval ===99% ===99.90% ===99.99% ===Max

Hiccup Duration (msec)
Hiccup Duration (msec)

N B D (e}
o o o o
o o o o
o o o o

o

500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000
Elapsed Time (sec) Elapsed Time (sec)

Hiccups by Percentile Distribution Hiccups by Percentile Distribution

Hiccup Duration (msec)
Hiccup Duration (msec)

99.9% 99.99% 99.999% 0% Max229.384 99% 99.9% 99.99% 99.999% 99.9999%

Percentile Percentile

Portal Application - Drawn to scale

SYSTEMS
©2012 Azul Systems, Inc.

AZUL

torsdag den 7. marts 13

Lets not forget about GC tuning

Java GC tuning is "hard”...

Java GC tuning is "hard”...

Examples of actual command line GC tuning parameters:

Java GC tuning is "hard”...

Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g
-XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizeInBytes=256m ...

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

Java GC tuning is "hard”...

Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g
-XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizeInBytes=256m ...

Java -Xms8g -Xmx8g —-Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled
-XX:+CMSParalle|lRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC -Xnoclassgc ...

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

Java GC tuning is "hard”...

Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g
-XX:NewSize=1y; -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepsi -AAiviaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizeInBytes=256m ...

Java -Xms8g -Xmx8g —-Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled
-XX:+CMSParalle|lRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC -Xnoclassgc ...

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

Java GC tuning is "hard”...

Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g
-XX:NewSize=1y; -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepsi -AAiviaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizeInBytes=256m ...

Java -Xms8g -Xmx8g —-Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrov: -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled
-XX:+CMSParalle|lRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC -Xnoclassgc ...

©2011 Azul Systems, Inc.

torsdag den 7. marts 13

A few GC tuning flags

PrintClassHisto

MSClassUnloadingEnabled oSz NewRatio 2
CMSTriggerRatio HeapMaxumuml:umpactmnlnterval Se 0 " c a r we e
< PrintClasshistogramAfterfuliC CHSPLABRecordAiways ChSincrementalPacing S
ParGCDemredl]h]sFrum[lverflowllstc_,

GCOverheadReportingPeriodM$
CMSAbortablePrecleanWaitMillis

xpllcit

2 == g
CHSOIPLABMax E s g £% s = g
CMSLoopWarn = £ 2 = =2 = g . =
CMSScavengeBeforeRemark = P'é'r'gff"e"cegclnﬁ t§ Z & (MSRevisitStackSize EE = PrintCMSStatistics £ = = §
CMSPrecleanNumerator = = _ 5 * P““{ﬁme“;t’ac UE 2 S Uncommit0ldGenOnGC 2SponcocThreads S CNSAbortSemanties'ss = 2 °2
GETM SRlimaEkVeriyVanantE S 53 £ CHSConcirentiTEnabled = o35 CNSYielileepCount MaxGCMmurPauseMllllst CMSPrecleanRefLists? CHSSamplngGain §=28 =
g 2 2Z% E5 = CMSincrementalDutyCycle = S CMSPrintObjectslnDump CHSConcMarkMultple HeapbumphfterbulliC £ 2 = &
S a0 5 2 SZEE ousudPBReactivitfactor CHSBtNapFelduantm gy ronetaiatetyfactor o LS 2 £ 5
E HF:‘ $§§ 2 :E: =E y = AdaptivePermSuenght CMSSchedul RncrEIIIke[l:'asa e~n¥ aﬂhﬂll'd CMSTrlggerPermRatm g E & gﬁ
== £ =2 & ‘g5 g IBrullCsBetoreCompaction S pysyjorkQueveDrainThreshold “>>cre A i e CMSInitiatingOEcupancyFraction
=22 ES £ S m=Z= (MSSmaliSplitSurplusPercent = T BRRCAU R MCHITERL TS
SS S2=2g3 5 25E & CMSincrementalDutyCycleMin NewSizeThreadincrease CMSCompactWhenClearAllSoftRefs HeapDumpPath
S ESSSEZ «aCMSCOOI‘ﬂIIMtOI’YIBl[lSlBEpCUImt CMSClassUnloadingMaxInterval CMSScheduleRemarkSamplingRatio AdaptiveSizeMajorGCDecayTimeScale
a 2SEVS.3S “BMSPrecleamngEnahled CMSMaxAbortablePrecleanLoops ; ' y
e Eéxm S 5 MaheapSze CHSPermenPrecieaningtnabled CMSPermGenSweepingEnableduiatigteasccsgancpercn
== ZES = (MSReplenishintermediate Print6C S
=2 S ES jMSIn|t|aﬂngPerm0ccupancyFractwn Se ar ew l;,rmt&;%TTaskTéltneStampsDIS&hIBEXplICIth B
33 = S=E GiHeapRegionSize rintutlimestamps S
S5 = 88% VETDOSE: gcp arGCArrayScanChunk " cMSAbortablePrecleanMinWorkPerlteration =
== c : GCDrainStackTargetSize S
%

eapDumpOnQutOfMemoryError

CMSLargeSplitSurplusPercent . CMSDUmPAtPromotionFailure oycpa promteBlocksToClaim

BeforeFullGC

ump
CMSOIdPLABResizeQuicker

PrintGCApplicationStoppedTime ~ CMSIsTooFullPercentage

CMSBootstrapllccupancy

.CMSParaIIeIRemarkEnahled

GCPauselntervalMillis

CMSOIdPLABMin

CMSOIdPLABReactivityCeiling éM.f-,M"*“""{,",,“,;'35{,%&'%33}&"&3"0,,33 ScavengeBefnreFuIIGC= PermMarkSweepDeadRatio PrintCMSInitiationStatistics

BindGCTaskThreadsToCPUs == SMWaxPermHeapExpansion GCLockerlnvokesConcurrent g e fechanomomi i _ GCOverheadReporting

ParGCUselocalbverflow =~ & § AutoCCSelectPauseMillis MinHeapDeltaBytes — Printﬂ{tfi]ceg:i'lls resnold GCHeapFreeLimit CMSRescanMultiole

ﬂax%ﬁé’é‘lseml']'“gt 8S £ PermSize CMSOIdPLABNumRefills CMSEprngactor CMSPrecleanReflistsl . uoa FreeRatlop

oHSYiey s 28 U B g CSPrecleanlter iialHeapSize ChSUseDldDefalt
——

CMSPrecleanSurvivors2 CMSExtrapolateSweep PrintHea
CMSWaitDuration

Source: Word Cloud created by Frank Pavageau in his Devoxx FR 2012 presentation titled “Death by Pauses”

torsdag den 7. marts 13

The complete guide to
Zing GC tuning

The complete guide to
Zing GC tuning

Java -Xmx40g

GC is only the biggest problem...

JVMs make many tradeoffs
often trading speed vs. outliers

JVMs make many tradeoffs
often trading speed vs. outliers

® Some speed fechniques come at extreme outflier costs

@ E.g. ("reqular”) biased locking

@ E.g. counted loops optimizations

JVMs make many tradeoffs
often trading speed vs. outliers

® Some speed fechniques come at extreme outflier costs
@ E.g. ("reqular”) biased locking

@ E.g. counted loops optimizations

@ Deoptimization

JVMs make many tradeoffs
often trading speed vs. outliers

® Some speed fechniques come at extreme outflier costs
@ E.g. ("reqular”) biased locking
@ E.g. counted loops optimizations

@ Deoptimization

® Lock deflation

JVMs make many tradeoffs
often trading speed vs. outliers

® Some speed fechniques come at extreme outflier costs
@ E.g. ("reqular”) biased locking
@ E.g. counted loops optimizations

@ Deoptimization

® Lock deflation

® Weak References, Soft References, Finalizers

JVMs make many tradeoffs
often trading speed vs. outliers

® Some speed fechniques come at extreme outflier costs
@ E.g. ("reqular”) biased locking
@ E.g. counted loops optimizations

@ Deoptimization

@ Lock deflation

® Weak References, Soft References, Finalizers

@ Time To Safe Point (TTSP)

Time To Safepoint (TTSP)
Your new #1 enemy

Time To Safepoint (TTSP)
Your new #1 enemy

@ (Once GC itself was taken care of)

Time To Safepoint (TTSP)
Your new #1 enemy

@ (Once GC itself was taken care of)

@ Many things in a JVM (still) use a global safepoint
@ All threads brought to a halt, and then released

@ E.g. GC phase shifts, Deoptimization, Class unloading,
Thread Dumps, Lock Deflation, etc. etc.

Time To Safepoint (TTSP)
Your new #1 enemy

@ (Once GC itself was taken care of)

@ Many things in a JVM (still) use a global safepoint
@ All threads brought to a halt, and then released

@ E.g. GC phase shifts, Deoptimization, Class unloading,
Thread Dumps, Lock Deflation, etc. etc.

@ A single thread with a long time-to-safepoint path can
cause an effective pause for all other threads

Time To Safepoint (TTSP)
Your new #1 enemy

@ (Once GC itself was taken care of)

@ Many things in a JVM (still) use a global safepoint
@ All threads brought to a halt, and then released

@ E.g. GC phase shifts, Deoptimization, Class unloading,
Thread Dumps, Lock Deflation, etc. etc.

@ A single thread with a long time-to-safepoint path can
cause an effective pause for all other threads

@ Many code paths in the JVM are long...

Time To Safepoint (TTSP)
the most common examples

Time To Safepoint (TTSP)
the most common examples

@ Array copies and object clone()

Time To Safepoint (TTSP)
the most common examples

@ Array copies and object clone()

@ Counted loops

Time To Safepoint (TTSP)
the most common examples

@ Array copies and object clone()

@ Counted loops

@ Many other other variants in the runtime...

Time To Safepoint (TTSP)
the most common examples

@ Array copies and object clone()

@ Counted loops

@ Many other other variants in the runtime...

Time To Safepoint (TTSP)
the most common examples

@ Array copies and object clone()
@ Counted loops

@ Many other other variants in the runtime...

@ Measure, Measure, Measure...

Time To Safepoint (TTSP)
the most common examples

@ Array copies and object clone()
@ Counted loops

@ Many other other variants in the runtime...

@ Measure, Measure, Measure...

@ At Azul, I walk around with a 0.5msec stick...

Time To Safepoint (TTSP)
the most common examples

@ Array copies and object clone()
@ Counted loops

@ Many other other variants in the runtime...

@ Measure, Measure, Measure...

@ At Azul, I walk around with a 0.5msec stick...

® Zing has a built-in TTSP profiler

OS related stuff
(once GC and TTSP are taken care of)

OS related stuff
(once GC and TTSP are taken care of)

@ OS related hiccups tend to dominate once GC and TTSP
are removed as issues.

OS related stuff
(once GC and TTSP are taken care of)

@ OS related hiccups tend to dominate once GC and TTSP
are removed as issues.

@ Take scheduling pressure seriously (Duh?)

OS related stuff
(once GC and TTSP are taken care of)

@ OS related hiccups tend to dominate once GC and TTSP
are removed as issues.

@ Take scheduling pressure seriously (Duh?)

@ Hyper-threading (good? bad?)

OS related stuff
(once GC and TTSP are taken care of)

@ OS related hiccups tend to dominate once GC and TTSP
are removed as issues.

@ Take scheduling pressure seriously (Duh?)

@ Hyper-threading (good? bad?)

@ Swapping (Duh!)

OS related stuff
(once GC and TTSP are taken care of)

@ OS related hiccups tend to dominate once GC and TTSP
are removed as issues.

@ Take scheduling pressure seriously (Duh?)
@ Hyper-threading (good? bad?)

@ Swapping (Duh!)

@ Power management

OS related stuff
(once GC and TTSP are taken care of)

@ OS related hiccups tend to dominate once GC and TTSP
are removed as issues.

@ Take scheduling pressure seriously (Duh?)
@ Hyper-threading (good? bad?)
@ Swapping (Duh!)

@ Power management

@ Transparent Huge Pages (THP).

OS related stuff
(once GC and TTSP are taken care of)

@ OS related hiccups tend to dominate once GC and TTSP
are removed as issues.

@ Take scheduling pressure seriously (Duh?)
@ Hyper-threading (good? bad?)

@ Swapping (Duh!)

@ Power management

@ Transparent Huge Pages (THP).

D ..

Takeaway: In 2013, “"Real” Java is finally
viable for low latency applications

Takeaway: In 2013, “"Real” Java is finally
viable for low latency applications

® GC is no longer a dominant issue, even for outliers

Takeaway: In 2013, “"Real” Java is finally
viable for low latency applications

® GC is no longer a dominant issue, even for outliers

@ 2-3msec worst case case with "easy” tuning

Takeaway: In 2013, “"Real” Java is finally
viable for low latency applications

® GC is no longer a dominant issue, even for outliers

@ 2-3msec worst case case with "easy” tuning

@ < 1 msec worst case is very doable

Takeaway: In 2013, “"Real” Java is finally
viable for low latency applications

® GC is no longer a dominant issue, even for outliers
@ 2-3msec worst case case with "easy” tuning

@ < 1 msec worst case is very doable

@ No need to code in special ways any more
@ You can finally use “real” Java for everything
@ You can finally 3rd party libraries without worries

@ You can finally use as much memory as you want

@ You can finally use regular (good) programmers

One-liner Takeaway:

Zing: A cure for the Java hiccups

Q&A
Session # 8206

One-liner Takeaway:
Zing: A cure for the Java hiccups

JHiccup:

http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com

