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High level agenda

@ Intro, jitter vs. JITTER

@ Java in a low latency application world
@ The (historical) fundamental problems
@ What people have done to fry to get around them

® What if the fundamental problems were eliminated?

® What 2013 looks like for Low latency Java developers




This is Jitter:
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Is “jitter” a proper word for this?

Hiccups by Time Interval
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Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

N
(92

N
o

[HY
U

[HY
o
]

o
U
2]

E
c

O
5
©
S
>

o
Q.
>
L

2

L

0a)
]

300 400
Elapsed Time (sec)

99%'ile is ~60 usec

©2012 Azul Systems, Inc.

AZUL

SYSTEMS

torsdag den 7. marts 13



c 4 PlIope JI C

Hiccups by Time Interval
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About me: Gil Tene

@ co-founder, CTO
@Azul Systems

@ Have been working on
a “think different” GC
approaches since 2002

® Created Pauseless & C4

core GC algorithms
(Tene, Wolf)

@ A Long history building
Virtual & Physical
Machines, Operating

Systems, Enterprise
apps €'|'C ¥ working on real-world trash compaction issues, circa 2004
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About Azul

@ We make scalable Virtual
Machines

& Have built “whatever it takes
to get job done” since 2002

@ 3 generations of custom SMP
Multi-core HW (Vega)

@ Now Pure software for
commodity x86 (Zing)

@ Known for Low Latency,
Consistent execution, and
Large data set excellence

AMD

Opteron

&P

©2011 Azul Systems, Inc.

torsdag den 7. marts 13




Java in the low latency world




Java in a low latency world




Java in a low latency world

® Why do people use Java for low latency apps?




Java in a low latency world

® Why do people use Java for low latency apps?

@ Are they crazy?




Java in a low latency world

® Why do people use Java for low latency apps?

@ Are they crazy?

@ No. There are good, easy to articulate reasons




Java in a low latency world

® Why do people use Java for low latency apps?
@ Are they crazy?

@ No. There are good, easy to articulate reasons

@ Projected lifetime cost




Java in a low latency world

® Why do people use Java for low latency apps?
@ Are they crazy?
@ No. There are good, easy to articulate reasons

@ Projected lifetime cost

@ Developer productivity




Java in a low latency world

@ Why do people use Java for low latency apps?
@ Are they crazy?

@ No. There are good, easy to articulate reasons
@ Projected lifetime cost

@ Developer productivity

@ Time-to-product, Time-to-market, ...
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@ Why do people use Java for low latency apps?
@ Are they crazy?

@ No. There are good, easy to articulate reasons
@ Projected lifetime cost

@ Developer productivity

@ Time-to-product, Time-to-market, ...

@ Leverage, ecosystem, ability to hire
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E.g. Customer answer fto:
"Why do you use Java in Algo Trading?”

@ Strategies have a shelf life
@ We have to keep developing and deploying new ones
@ Only one out of N is actually productive

@ Profitability therefore depends on ability to
successfully deploy new strategies, and on the cost
of doing so

@ Our developers seem to be able to produce 2x-3x as
much when using a Java environment as they would
with C++ ..
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So what is the problem?
Is Java Slow?

@ No

@ A good programmer will get roughly the same speed
from both Java and C++

@ A bad programmer wont get you fast code on either
@ The 50% ile and 90%'ile are typically excellent...

@ Its those pesky occasional stutters and stammers
and stalls that are the problem...

@ Ever hear of Garbage Collection?




Java’s achilles heel
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Stop-The-World Garbage Collection:
How bad is it?

@ Lets ignore the bad multi-second pauses for now...

@ Low latency applications regularly experience “small”,
"minor” GC events that range in the 10s of msec

@ Frequency directly related to allocation rate

@ In turn, directly related to throughput

@ So we have great 50%, 90%. Maybe even 99%
@ But 99.9%, 99.99%, Max, all “suck”

® So bad that it affects risk, profitability, service
expectations, etc.
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Another way to cope: "Creative Language”
® “Guarantee a worst case of 5 msec, 99% of the time”

@ "Mostly” Concurrent, "Mostly” Incremental

Translation: "Will at times exhibit long monolithic stop-
the-world pauses”

@ "Fairly Consistent”

Translation: “"Will sometimes show results well outside
this range”

@ "Typical pauses in the tens of milliseconds”

Translation: "Some pauses are much longer than tens of
milliseconds”
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What do low latency (Java) developers
get for all their effort?

@ They still see pauses (usually ranging to tens of msec)
@ But they get fewer (as in less frequent) pauses

@ And they see fewer people able to do the job

@ And they have to write EVERY THING themselves

@ And they get to debug malloc/free patterns again

D ..

@ Some call it "fun”... Others "duct tape engineering”...




There is a fundamental problem

Stop-The-World GC mechanisms
are contradictory to the
fundamental requirements of
low latency & low jitter apps
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® Development focus for ALL is on Oldgen collectors
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"pause target”, they refer only to the OldGen part of the collector

@ Focus is on frying to address the many-second pause problem
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The common GC behavior across ALL
currently shipping (non-Zing) JVMs

@ ALL use a Monolithic Stop-the-world NewGen

o “small” periodic pauses (small as in 10s of msec)

@ pauses more frequent with higher throughput or allocation rates

® Development focus for ALL is on Oldgen collectors

@ When they say "mostly concurrent”, or “mostly incremental”, or
"pause target”, they refer only to the OldGen part of the collector

@ Focus is on frying to address the many-second pause problem

@ Usually by sweeping it farther and farther the rug

@ ALL use a Fallback to Full Stop-the-world Collection

@ Used for dealing with the inevitable pile of dust under the rug
@ Used to recover when other mechanisms fail

@ Hidden under the term “"Mostly”...
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® We decided to focus on the right core problems
@ Scale & productivity being limited by responsiveness
@ Even “short” GC pauses are considered a problem

® Responsiveness must be unlinked from key metrics:
@ Transaction Rate, Concurrent users, Data set size, efc.
@ Heap size, Live Set size, Allocation rate, Mutation rate
@ Responsiveness must be continually sustainable
o

Cant ignore "rare but periodic” events
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® Responsiveness must be unlinked from key metrics:

@ Transaction Rate, Concurrent users, Data set size, efc.
@ Heap size, Live Set size, Allocation rate, Mutation rate
@ Responsiveness must be continually sustainable
o

Cant ignore "rare but periodic” events

@ Eliminate ALL Stop-The-World Fallbacks
@ Any STW fallback is a real-world failure
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At Azul, STW-GC was addressed head-on

® We decided to focus on the right core problems
@ Scale & productivity being limited by responsiveness
@ Even “short” GC pauses are considered a problem

® Responsiveness must be unlinked from key metrics:
@ Transaction Rate, Concurrent users, Data set size, efc.
Heap size, Live Set size, Allocation rate, Mutation rate

o
@ Responsiveness must be continually sustainable
@

Can’r |gnore “rare bu’r eriodic" even’rs

# @ Ellmlna’re ALL S’rop—The-World Fallbacks
M, @ Any STW fallback is a real-world failure
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The Zing "C4” Collector

Continuously Concurrent Compacting Collector

@ Concurrent, compacting old generation
@ Concurrent, compacting new generation

@ No stop-the-world fallback

@ Always compacts, and always does so concurrently

SSSSSSS
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The Zing "C4” Collector

Continuously Concurrent Compacting Collector

@ Concurrent, compacting old generation

@ Concurrent, compacting new generation

AZUL

SYSTEMS
©2011 Azul Systems, Inc.

torsdag den 7. marts 13



Benefits

©2011 Azul Systems, Inc.

torsdag den 7. marts 13



An example of "First days run” behavior
E-Commerce application

Azul Systems - Zing LX Garbage Collector Log Analyser - /Users/gil/Downloads/AnonCustomer/Decl1/gc/verbosegc.log

File Edit Help
_ Open MSnapshot Time Range (Minutes): 0.0043363334 3.385084  to 702.0003  722.126 ' SetTime Range < Reset U Select Data | GCLA Heap use: 30% Old GC/min: 0

Heap Usage - New & Old GC Current/Peak/Max * GC and Safepoint - Pause Duration * | App Delays * GC Duration * GC Concurrent Phase Times GC Time Percent * | GC Count *

GC and Safepoint - Pause Duration
0.00550 1

0.00525 4
0.00500
0.00475
0.00450 1
0.00425
0.00400
0.00375 1
0.00350 ¢
0.00325
0.00300 1
0.00275 1
0.00250
0.00225
0.00200 1
0.00175 4
0.00150
0.00125
0.00100 1
0.00075
0.00050
0.00025

0.00000 : : : : : ‘ : : : s ‘ : : —
75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725

Elapsed Time (Minutes)

#- New GC Pause 1 Duration -® New GC Pause 2 Duration New GC Pause 3 Duration -# New GC Pause 4 Duration = Old GC Pause 2 Duration Old GC Pause 3 Duration
Old GC Pause 4 Duration -» Deoptimize Pause -#- Force Safepoint Pause -« Concurrent Deflation Pause - Other Safepoint Pause
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An example of behavior after 4 days of system funing
Low latency application

e 0o Azul Systems - Zing LX Garbage Collector Log Analyser - /Users/gil/Downloads/AnonCustomer/LowLatWithSomeTuning/hotspotgc.log
File Edit Graph Help

Open Q) Snapshot Time Range (Minutes) 0.0056 0.0056 to 60.274967 60.274967 Set Time Range ) Reset ¥ Select Data @eap use: 20% Old GC/min: 0

| Heap Use - New & Old GC AfterCollection/Peak/Max [cchuu Duration ] Process - Application Delays % | GCDuration % | GC Concurrent Phase Times X | GC Time (Percent) % | GC Count x |

GC Pause Duration

0019
0018
0017
0016
0015

0014

0013

0012

0011

0010

L0009

0008

0007

0006

0005

0004

.0003

0002

0001 : : =

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 425 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5

Elapsed Time (Minutes)

& New GC Pause 1 Duration - New GC Pause 2 Duration New GC Pause 3 Duration -+ New GC Pause 4 Duration = Oid GC Pause 1 Duration ¥ Oild GC Pause 2 Duration
Old GC Pause 3 Duration Old GC Pause 4 Duration & Safepoint Pause
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This is not “just Theory”

JHiccup:
A tool that measures and reports
(as your application is running)
if your JVM is running all the time




Discontinuities in Java platform execution - Easy To Measure

Hiccups by Time Interval
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Discontinuities in Java platform execution - Easy To Measure
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Fun with jHiccup

. Charles Nutter headius 20 Jan
\ jHiccup, @AzulSystems' free tool to show you why your JVM sucks

compared to Zing: bit.ly/wsH5A8 (thx @bascule)
L3 Retweeted by Gil Tene
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Oracle HotSpot (pure newgen)

Hiccups by Time Interval
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Its not just for
Low Latency
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for human-response-time

apps




Oracle HotSpot CMS, 1GB in an 8GB heap Zing 5, 1GB in an 8GB heap
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Lets not forget about GC tuning
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Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g
-XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizeInBytes=256m ...
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Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g
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A few GC tuning flags
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Source: Word Cloud created by Frank Pavageau in his Devoxx FR 2012 presentation titled “Death by Pauses”
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The complete guide to
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Java -Xmx40g




GC is only the biggest problem...
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Time To Safepoint (TTSP)
Your new #1 enemy

@ (Once GC itself was taken care of)

@ Many things in a JVM (still) use a global safepoint
@ All threads brought to a halt, and then released

@ E.g. GC phase shifts, Deoptimization, Class unloading,
Thread Dumps, Lock Deflation, etc. etc.

@ A single thread with a long time-to-safepoint path can
cause an effective pause for all other threads

@ Many code paths in the JVM are long...
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Time To Safepoint (TTSP)
the most common examples

@ Array copies and object clone()
@ Counted loops

@ Many other other variants in the runtime...

@ Measure, Measure, Measure...

@ At Azul, I walk around with a 0.5msec stick...

® Zing has a built-in TTSP profiler
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@ OS related hiccups tend to dominate once GC and TTSP
are removed as issues.

@ Take scheduling pressure seriously (Duh?)
@ Hyper-threading (good? bad?)

@ Swapping (Duh!)

@ Power management

@ Transparent Huge Pages (THP).
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Takeaway: In 2013, “"Real” Java is finally
viable for low latency applications

® GC is no longer a dominant issue, even for outliers
@ 2-3msec worst case case with "easy” tuning

@ < 1 msec worst case is very doable

@ No need to code in special ways any more
@ You can finally use “real” Java for everything
@ You can finally 3rd party libraries without worries

@ You can finally use as much memory as you want

@ You can finally use regular (good) programmers
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One-liner Takeaway:
Zing: A cure for the Java hiccups

JHiccup:



http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com

