
Climbing out of a crisis-loop
at the BBC

Katherine Kirk
Raf Gemmail

QCon London 2013

Session code: 7531

Introduction: the comfort page

• Katherine Kirk, Independent
– Was PM on this project

• Background
– Contracting for over 10 years

» Investment banks, Media companies, Trading companies…
mostly large corporations

» Previously:

• Rally Coach – John Deere, Philips, Continental, Petris etc

• BBC - R&D, iPlayer, Core services

– MSc Software Engineering, Oxford

• Raf Gemmail
– Was Dev on this project

• One scenario

• Two perspectives

Disclaimer

• This is the view of the presenters NOT the BBC

– The current team is working well

Keeping buzz words to a minimum

... swimlanes, policies, WIP limits, empowerment,
cooperation, etc etc ...

• Instead:

– Case study + plain language

• Why?

– At the end of the day: its about getting stuff done

This pres is about

• Working past the industry sell

– Do Scrum or Kanban ‘right’

• What happens if you can’t do Scrum or
Kanban ‘properly’?

• Can you still be Agile/Lean

• Can you get out of a pretty bad crisis?

• We think we did

Format

• What was the crisis?

• What Scrum and Kanban we did ‘roughly’?

• What did we differently?

• Why did the crisis loop stop?

• Not a typical agile team scenario

– Purely back end team

– Not cross-functional

– All Perl/Java devs doing same thing

– No front end

– No vertical slicing

In 3 months

• Calmed the crisis-to-crisis cycle that had been
running for nearly 2 years

• Began building new solution

• Kept things running AND improved the process at
the same time

• Turned around stakeholder relationships

• Despite
– People leaving and a restructure

But we did everything ‘incorrectly’

Kanban-ish

Scrum-ish

So what did we do differently?

And were we still Agile/Lean if we didn’t follow
the ‘rule book’?

Key factor in our ‘success’

• Agile/Lean are principles NOT methods

• This means you can use your brain to solve
stuff, as long as it aligns with the principles(!)

• Hmmm....

THE CASE STUDY: CONTEXT

Team

• Specialist, metadata delivery back end team

• Create feeds to display content

– Main ‘client’: iPlayer

– Daily traffic peak of between 200 and 500
requests/second (Not including cached responses)

– Over 700 playback formats

– Servicing hundreds of devices

• Mobile, IPTV, PC, tablets (in all variants and models)

Put into perspective

• “... 30m requests for iPlayer content via mobile or
tablet in July [2012] alone

• [represents only] 20% of all requests for iPlayer
programmes across all platforms... “

• Approx 150 million requests per month

• No metadata feed = no content display
– Front end teams are dependent

• cannot display content without getting feed
• cannot change or edit a feed – needs specialist expertise

http://www.bbc.co.uk/blogs/internet/posts/iplayer_mobile_downloads

Front end
teams

Core/Back
end teams

Integration &
Operations

Operations

Tstng

Fierce backlog competition

iPlayer Radio & Music Externals...

mobile

IPTV

PC

etc

etc
etc

etc mobile

IPTV

PC

etc

etc
etc

etc mobile

IPTV

PC

etc

etc
etc

etc

Meta
data

Logic Search etc etc etc

Testing &
Integration

Front end
teams

Core/Back
end teams

Integration &
Operations

Operations

Tstng

Integration & Test= 4 weeks min

iPlayer Radio & Music Externals...

mobile

IPTV

PC

etc

etc
etc

etc mobile

IPTV

PC

etc

etc
etc

etc mobile

IPTV

PC

etc

etc
etc

etc

Meta
data

Logic Search etc etc etc

Testing &
Integration

* Extra workload on top of planned items (a sprint never ends...)

*

Operations: One big bottleneck

Front end
teams

Core/Back
end teams

Integration &
Operations

iPlayer Radio & Music Externals...

mobile

IPTV

PC

etc

etc
etc

etc mobile

IPTV

PC

etc

etc
etc

etc mobile

IPTV

PC

etc

etc
etc

etc

Meta
daata

Logic Search etc etc etc

Operations

Testing &
Integration

Divisional
General
Manager

Heads of

Delivery
/Product
managers

Project
Manager

Official Communication

3 main issues for back end specialist team:
• Division heads do not necessarily have the expertise
• Prioritisation via Chinese whispers
• Time delay for decision making

So... if it’s urgent?

The crisis-loop

• Desperately holding on to Scrum
• Stakeholders have lost trust

• Technical debt increasing

• Work not done until urgent

• Silo expertise

• Management by manouvre

In summary

• Awesome team

• Running hard to stand still

• A ‘victim’ to its environment and corporate
structure

APPROACH

How to go about this?

• Others had gone through same thing and left

• Pressure

– Make change NOW

– Look like the expert

– Save the day!

• Highly specialised area: how could I know
what was wrong?

– Decided to observe first

Observation time

• I looked like an idiot

Observations after 3 weeks

• They were making all their commitments last
minute BUT

– “Reliance on 'hero' effort is the norm!

– Team is EXHAUSTED

– WHY?????

Causes

• Over 60% of team sprint activity = live and unexpected
issues

• Actual time on planned work is at 10% of management
expectation

• Struggling with stakeholder liaison - no visibility of progress
• Bugs taking 70 days turnover
• Acceptance Criteria non existent
• Already 6 month plus backlog
• Reviewing 20 more additional requests of work per week
• Capacity falling (ppl leaving)
• Difficulty hiring: specialist knowledge

New culture:
Under promise / Over deliver

Ask the EXPERTS what to do

Hand the problem over to the REAL
problem solvers: those doing the work!

– THE ENGINEERS!!!!!

(Warning to Managers: most engineers are more qualified at
solving problems than you are)

Solve problems collaboratively

Action

PM gathers/
collates info

Presents to
dev team

• (group or
individual)

Brainstorming

Reach general
consensus

• Time box
‘experiment’

Change through collaborative
experimentation

• Define agreed timeframe

• Action

• Review

• Keep/try something else

THE USUAL EXPLANATION:
SCRUM & KANBAN

Kept some Scrum

• Kept Scrum just for 40% workload (planned
delivery)

– Matching the rest of the org

• Kept meeting templates

– But didn’t always use them ‘in the right way’

Did ‘minimal’ Kanban

• Observed

• Visualised

• Incremental improvement after observations
of patterns

• No ‘proper’ measures

• No fancy graphs or charts

The original ‘day board’

To do Doing Done

Bugs?

Most requested:
What state is the work actually in?

To do doing done

Blocked Query Backlog Ready Doing For
review

Merged Ready
for test

Doing Done

Onto the day board....
Blocked Query Backlog Ready Doing For

review
Merged Ready

for test
Doing Done

What are we working on?

Sprint backlog urgent requests

Type Response needed

Bugs Days

Planned work Every two weeks ideally against
a 6 month plan

Performance & Optimisation Indefinite

Technical Debt Indefinite

Operations development Kneejerk (hourly?)

Ring fenced reality

Bugs (1-3 days)

Ops-Dev (now)

Performance
& Optimisation

Slate: Planned
Delivery

Slate: New
solution?

Response team

Delivery team

60%

40%

Actual
capacity

Type of work

• And then, incrementally improved

• 40% = Delivery team = Scrum-style

• 60% = Response team = Kanban style

USUALLY PRESENTATION ENDS
HERE....

In 3 months

 Results

 Live issues down (60% to 10-20%)

 Met delivery schedule thus far

 Most viewed program on iPlayer = no blip

 Improved stakeholder liaison

▪ From Red to Amber for Test and iPlayer (day to day operations, not
slate)

▪ Online and physical visibility of progress

▪ Bugs from 70 days to less than a sprint turnover

AND THAT’S IT????

• REALLY???

• Was that all it took?

• A bit of methodology?

HELL NO! Don’t be fooled

• Its not about the methods, its about people
– (and if you don’t believe me, read everything from

Alistair Cockburn, twice)

• For example
– Boards/Visualisations etc represent human

interactions

– Meetings / gatherings in Scrum are people
collaboration ‘tools’

WHAT WE DID ‘BEHIND THE
SCENES’

Collaboration

• We concentrated very hard on working together
openly and truthfully

• It was HARD work

• It was counter intuitive

• It didn’t feel comfortable

• Some people really struggled with it at the start

Examples

• Quirky stuff we did together

– Resulted from collaborating

– Rather than following methodology instructions

Workstream
Methodology Mix-n-Match

R
e

sp
o

n
se

D
e

liv
e

ry

Planned
delivery
(2 weeks)

Bugs
(1-3 days)

Ops Dev
(NOW)

P&O
(continuous)

Tech Debt

[Scrum –style planning to match stakeholder demand]

[Daily planning with Product Owner and Stakeholders]

[Hourly response and review]

[Both planned and responsive]

Devs rotate through
workstreams every 2 weeks

[Both planned and responsive]

Benefits

• Fairness

• Removing ‘single points of failure’

• Distributing knowledge throughout the team

– Holidays

– Sickness

– Mentoring

• Understanding of impact of coding practices

Changed the way we communicated:
Expand/Contract*

? D
is

co
ve

r Fo
cu

s

D
is

co
ve

r Fo
cu

s

D
is

co
ve

r Fo
cu

s

D
is

co
ve

r Fo
cu

s

Main
issues

Key
Causes

Best
solution

Effective
action

Issues Causes Solutions Actions

•Expand: what’s
wrong?

•Contract: what’s the
main issues?

•Expand: what’s
possible causes?

•Contract: what’s
the main
causes?

•Expand: how could
we fix this?

•Contract: what
would make the
most effect?

•Expand: how should
we go about this?

•Contract: what,
timeframe, how,
who?

*Rachel Davies knows a lot about this

In everything we did

• Conversations

• Reviews

• Retrospectives

• Speculations

Issues – Causes – Solutions - Actions

Examine the ‘truth’ openly

Stakeholder

Upper
Mgmt

Bugs

Support requests

Features

Per sprint

Adhoc requests

Delivery

PM

Devs

Emails

Conversations

Meetings

Ops-dev

Dev team

Jira

Collaborative discussions result

Stakeholder liaison: new set up

Dynamite
Inbox
In JIRA

Review:
PO / PM / Dev

and Test

Stakeholder

Upper
Mgmt

Slate

Per sprint

Per 24 hours

Feature
Champions

assigned here

Short tasks
needing quick
response

Dev Tester

Triage point

BONUS – solving issue
by collaborating means
we already have buyin

Overcame: Expertise silos

Backend /
Core team

devs

Front end
devs

Operations
devs

? ?
3 main issues for all:
• Integration
• Writing requirements/requests
• Understanding (what each other has done/why)

Champions

• Strategic, ‘inner’ PO role
– NOT a ‘dogs-body’

– Keeps the overview

– Responsible for a feature or area of the app
• Inception > live > maintenance and documentation

– QUALITY: What / how / when to code

– Direct liaise with stakeholder devs

– Breaks down work for backlog if required with PO

– Reports on progress

– Involved spearheading realistic estimation

Stakeholder
team

Stakeholder
team

Stakeholder
team

Champions:
REAL product ownership

PO dev

dev

dev

Stakeholder
team

dev

Backlog,
priority,
strategy

Performance
and

optimisation

Bugs/
Technical Debt

Initiated Team Peer Sessions

2 wks 2 wks 2 wks 2 wks 2 wks

* Optional: Estimating / review / info sharing

Sprints

Standups

Peer Sessions*

Planning

Retrospective

Standups – Kanban style
• Issues only
• Info sessions after, if required
• Blocked / hold resolution ASAP
• right to left

Peer Sessions (optional)
• Information transfer
• Feature champion led
• All on same page
• Data to the team (engagement)
• Strategy / plan comms
• Estimation of large features
• Reviewing effectiveness/ capacity

Planning
• Assign support team
• Rotate duties
• Estimation of support work
•Review/resolve operations issues

Defined ideal in REAL words

Ideal Example of measure of ideal

Increased quality no hemorrhaging bugs, last minute surprises and live issues;
significant reduction of usage of dev for the ‘bugs’ role per sprint

Significant reduction of
technical debt and it’s effects

 Time for refactoring is valued and provided

 Refactoring has clearly been done

 No ‘cowboy’ workaround pressure from Product Managers or upper
management

Significant reduction to backlog
of planned work

 work only on what is required

 Jira backlog only contains relevant and organized tickets

Good tracking of current and
upcoming workload

 no sudden surprises – e.g. B2B

Increased adaptability we can bend and flex with demand: technical solution, devs, testers
and process

Increased predictability on time delivery for committed items

Commitment process is realistic no promising by upstream of what we are not likely to deliver on
time – consultation with team/PMs BEFORE commitment

Realistic input and direction
from upstream management

 discussing not just what to do, but also HOW – incorporating
capacity limitations

Trusted PM/Dev/Tester/upper
management relationship

 request from upper management or stakeholder is translated
effectively, and efficiently flows through the system with a quality
output

More transparent upper
management activities

 what’s coming up is clear to the team and stakeholders

Happy stakeholders effective stakeholder expectation management: bravery to
communicate capacity limitations and other commitments

 good communication of process, progress on items and outward
documentation - example: business friendly release notes

Engaged and empowered devs all devs currently in position are retained, and scores of ‘job
satisfaction’ is around 7-8 out of 10, with 85% of all devs indicating
improvement of job - example: are enjoying their ‘feature champion’
role, suggesting and leading technical and process improvements

Decrease in throughput and
cycle time

 time reduced from engagement of stakeholder to output, in both
features and bugs

 solid identification and removal of blocks and holdups to dev and
test completion workflow (this includes upper management
response delays)

Engaged testers who impact
from upstream through to end
to end testing

 good testing coverage that is relevant

 good feedback loop and relationship with devs

 continuous integration/acceptance criteria

 devs and testers engage without prompting
Well documented features spec’d correctly WITH acceptance criteria in BDD scenarios

Engaged and useful product
managers who have good
stakeholder relationships and
translate requirements an
acceptance criteria well
downstream

 feedback from PMs of solid leadership from PO’s

 supportive and engaged with the delivery process end to end

 respect from devs of PO’s requests and direction

 Well documented features and significant bugs

 Well informed stakeholders

 Good use of boards and Jira
Good technical knowledge
spread amongst the team

 people can take holidays with minimal impact to quality and delivery

 no single point of failure

• Simple solutions

• Effective – for our context

• Not in the rulebook

• But in line with the principles of Agile/Lean

REAL RESULT

As we said before: In 3 months

 Results

 Live issues down (60% to 10-20%)

 Met delivery schedule thus far

 Most viewed program on iPlayer = no blip

 Improved stakeholder liaison

▪ From Red to Amber for Test and iPlayer (day to day operations, not
slate)

▪ Online and physical visibility of progress

▪ Bugs from 70 days to less than a sprint turnover

BUT: for the next 3 months

• WITHOUT a manager or coach

• Team self managed

– Kept improving

– Didn’t fall back into crisis

– Kept good stakeholder relationships

18 months later

• From all reports, the team is still going strong

– Now have a project manager

– Haven’t fallen back into crisis

Empowerment

People solving problems together

=

Learning

=

Can solve problems on their own

=

Less handholding/time wasting/cost!

REFLECTION

Summary

• Although we did
– Scrum-ish
– Kanban-ish

• Why did it work?

• Here is a hint....
– Individuals and interactions (over processes and tools)
– Customer collaboration (over customer negotiation)
– Responding to change (over following a plan)
– Etc..

Agile/Lean is not a method

• Kanban and Scrum are Agile/Lean
– But Agile/Lean are not necessarily Kanban or Scrum

• The principles can save ‘difficult’ projects
– Even when methods can’t

• Use principles as your guide

• Reality as your driver

• And methods as your tools

In a crisis loop

• Suggestion
– If you have to choose between a process (e.g.

Scrum or Kanban) and adhering to Agile/Lean
Principles....

– Choose the principles!

(err... that’d be this one: individuals and interactions over
processes and tools)

;-)

RAF GEMMAIL

A Dev's Eye View

We practiced Scrum:

 Sprints

 Pointing

 Planning poker

 XP

But during the Sprint:

 URGENT issues

 Out of remit features

But during the Sprint:

 URGENT issues

 Out of remit features

 Failure to learn from history

Planned work compromised by

unplanned work

The climate

 Code decay

The climate

 Code decay

 Reviews blocking features

The climate

 Code decay

 Reviews blocking features

 Devs and PM's leaving

The climate

 Code decay

 Reviews blocking features

 Devs and PM's leaving

 No time to improve dev process

The climate

 Code decay

 Reviews blocking features

 Devs and PM's leaving

 No time to improve dev process

09:30 Almost done

10:00 Stand up “I just have to merge

it.”

Merge

Test

11:00 Done

09:30 Nearly done

10:00 Stand up

Merge

Test Failed

Code

Test

Push

11:30 Done

09:30 Nearly done
10:00 Stand up

Merge
Test Failed
Bug: “Urgent! Who is

available?”
Code
Test
Push

14:00 Done

09:30 Nearly done
10:00 Stand up

Merge
Test Failed
Bug: “Stake holder complained..”
Code
Production Issue
Test
Push

18:00 Done

•90 mins work
== 8h day

Katherine Kirk on the Bridge

 You guys are AMAZING

 But Stakeholders are scared

Katherine Kirk on the Bridge

 You guys are AMAZING

 But Stakeholders are scared

 What do you think we should do?

Katherine Kirk on the Bridge

 You guys are AMAZING

 But Stakeholders are scared

 What do you think we should do?

Did she just ask us to fix the PM
function??

Are the stake holders letting her?

Nemawashi (根回し)

Review

Change

Review

Change

D
e
v
P
r
o
c
e
s
s

1

D
e
v
P
r
o
c
e
s
s

2

D
e
v
P
r
o
c
e
s
s

3

Improve without compromising

current workload

The 'normal' Retrospective noise

Ownership

Review: Expand/Contract

? D
is

co
ve

r Fo
cu

s

D
is

co
ve

r Fo
cu

s

D
is

co
ve

r Fo
cu

s

D
is

co
ve

r Fo
cu

s

Main
issues

Key
Causes

Best
solution

Effective
action

Issues Causes Solutions Action

Issues Dump

Example

Issues Dump Grouping

Example

Who knows what?

Cant keep up

Decaying Code

Issues Dump Grouping Cause?

Example

Single points
of failure

Too
reactionary
(accepting
too much)

Tech debt

Who knows what?

Cant keep up

Decaying Code

Action

Single points
of failure

Too
reactionary
(accepting
too much)

Tech debt

Cause

Action

Single points
of failure

Too
reactionary
(accepting
too much)

Tech debt

Cause Solution options

Action

Single points
of failure

Too
reactionary
(accepting
too much)

Tech debt

Rotate devs
through

workstreams

Prioritisation
and triage

New
workstream

on board

Cause Solution options Will try

No more heros

 A reactive Pull-based Response Team

 Feature Champions to PO critical features

 An Empowered Team!

Response team:

 Bugs

 Ops

 Performance and
optimisation

'Everyone-is-a-Hero' Rotation

Ops Bugs

'Everyone-is-a-Hero' Rotation

Ops

 Release Process

 Technical Debt

 Process automation

 Stability

Bugs

'Everyone-is-a-Hero' Rotation

Ops

 Release Process

 Technical Debt

 Process automation

 Stability

Bugs

Burdensome

Needs to be done

Often user error

'Everyone-is-a-Hero' Rotation

Ops

 Release Process

 Technical Debt

 Process automation

 Stability

Bugs

Burdensome

Needs to be done

Often user error

Shared Knowledge

Planned work: A new day!

 9am: Work on feature – include some TD

 Stand up

 CODE (Review / Have code review)

 TEST (Test – Merge –Test – Push)

 1800: HOME

1 days work
== 1 day uninterrupted work!!!!!

 9:30am Check Splunk Alerts

 10am Stand up

 10:15am Pull P&O card

 12pm Discuss optimisation
with Recommendations team

 2pm Pair with TL on incident

 3pm Review Related Code
and raise ticket

 4pm Refactor and speed up
some feed •P&O Officer's Log

1 days work == whatever needed!!!!!

Response work: A new way!

Visualisations provided a more
granular understanding

 Dev = {analysis, dev, review, testing, merge}

Visualisations provided a more
granular understanding

 Dev = {analysis, dev, review, testing, merge}

 “I'm nearly done” → “He's in review”

Visualisations provided a more
granular understanding

 Dev = {analysis, dev, review, testing, merge}

 “I'm nearly done” → “He's in review”

 “I'm merging” → “Dev's still got tests to run”

Visualisations provided a more
granular understanding

 Dev = {analysis, dev, review, testing, merge}

 “I'm nearly done” → “He's in review”

 “I'm merging” → “The dev's still got tests to run”

 Test Column → Test Board

Visualisations provided a more
granular understanding

 Dev = {analysis, dev, review, testing, merge}

 “I'm nearly done” → “He's in review”

 “I'm merging” → “The dev's still got tests to run”

 Test Column → Test Board

Self Management

 Continued to improve “established”
process

 Experiments with pointing

 Moves towards pure TDD

 New PM → went to Scrumban

Communication & Collaboration

Over

Process

On Reflection

Consider

 If we'd tried

Scrum-right

Kanban-right

 Not so Agile/Lean?

 Results as quick?

 As Sustainable?

 Self-managing?

Principles

Lean

 Eliminate waste

 Amplify learning

 Decide as late as
possible

 Deliver as fast as
possible

 Empower the team

 Build integrity in

 See the whole

Agile Manifesto

Individuals and
interactions over
processes and tools

Working software over
comprehensive
documentation

Customer collaboration
over contract
negotiation

Responding to change
over following a plan

Nemawashi (根回し)

