
How we scaled
Songkick

Friday, 8 March 13

http://qconlondon.com/london-2013/presentation/How%20we%20scaled%20Songkick%20for%20more%20traffic%20and%20more%20productive%20development
http://qconlondon.com/london-2013/presentation/How%20we%20scaled%20Songkick%20for%20more%20traffic%20and%20more%20productive%20development
http://qconlondon.com/london-2013/presentation/How%20we%20scaled%20Songkick%20for%20more%20traffic%20and%20more%20productive%20development
http://qconlondon.com/london-2013/presentation/How%20we%20scaled%20Songkick%20for%20more%20traffic%20and%20more%20productive%20development
file://localhost/Users/marc/src/sk-browser-reports/public/images/charts/visits-2013-02-23-visits.svg
file://localhost/Users/marc/src/sk-browser-reports/public/images/charts/visits-2013-02-23-visits.svg

songkick.com

• Founded 2007

• Hundreds of thousands of upcoming
concerts

• 3.4 million past concerts

• 8 million uniques a month

• Second most visited live music website
after ticketmaster

Friday, 8 March 13

3 slides:
Overview of songkick. Pictures.

How did it start?
How big is company?
How many devs etc?
How were you architecting stuff?

What roles?
How is team structured?
What problems did this cause / did you face?

Friday, 8 March 13

We Started small

• Four people in a flat in Spitalfields

• And grew

Friday, 8 March 13

We are still small

• 30 People in an office in Hoxton

• We are divided into cross functional teams
the number and size of which change as we
need

Friday, 8 March 13

We also do

Maybe not the iphone and
android applications.
Though they use some
similar concepts and
certainly rest on some of
the same infrastructure.

In the case of the iPhone
and Android applications
the way we know which
artists you are interested
in is we look on you
device. We also use
geolocation to find where
you are and to notify you,
we use push notification.

Again this is just for
completeness we are
probably not going to
mention them much

But I’m not going to be
talking directly about
these, although they do
use a similar
architecture.

Friday, 8 March 13

The old architecture

skweb

Mysql

Friday, 8 March 13

The old architecture

skweb

Mysql

A rails application

Friday, 8 March 13

What was the problem

• Initially features were over-engineered

• To develop and ship quickly it was easier to
stick it all in one place

• But site was up, traffic growing. Trouble
brewing …

Friday, 8 March 13

What’s the problem?

• Shipping new features became difficult

• Our builds were taking hours to run

• We had complex relationships between
what were notionally separate applications

• Dependancies were hard to understand
and hard to untangle

All these things meant if you wanted to change something, if you wanted to change the copy in an emails, you had to deploy the entire app.

We had a few false starts where we broke up the functions of the application. Unfortunately the boundaries weren’t clear and it was still a single
code base so we still had to deploy everything together

Integration queue

Friday, 8 March 13

Our dependency graph
We wrote software to
tell us what the
dependancies were of
the components of our
software.

It wasn’t pretty.

Friday, 8 March 13

Why re-architect?

We can respond to
competitors and changes
in the market more
readily.

For us increasing
productivity was one of
our most important
goals.

Yes performance was
import, and, yes we had a
lot of code in the app to
make it more
performant (caching etc)
Which did make it
reasonably performant.

Friday, 8 March 13

Why re-architect?

• Scale (more users doing more things)

We can respond to
competitors and changes
in the market more
readily.

For us increasing
productivity was one of
our most important
goals.

Yes performance was
import, and, yes we had a
lot of code in the app to
make it more
performant (caching etc)
Which did make it
reasonably performant.

Friday, 8 March 13

Why re-architect?

• Scale (more users doing more things)

We can respond to
competitors and changes
in the market more
readily.

• Developer productivity (more features,
fewer bugs)

For us increasing
productivity was one of
our most important
goals.

Yes performance was
import, and, yes we had a
lot of code in the app to
make it more
performant (caching etc)
Which did make it
reasonably performant.

Friday, 8 March 13

Why re-architect?

• Scale (more users doing more things)

We can respond to
competitors and changes
in the market more
readily.

• Developer productivity (more features,
fewer bugs)

• Agility (more frequent releases, shorter
time between releases)

For us increasing
productivity was one of
our most important
goals.

Yes performance was
import, and, yes we had a
lot of code in the app to
make it more
performant (caching etc)
Which did make it
reasonably performant.

Friday, 8 March 13

Why not re-architect?
These were all real
concerns.

How do you persuade the other people in the company that
spending six months doing this is worth doing?

This is a start-up you really can’t spend six month navel gazing.
The company could go bust.

You need to have a compelling reason and a plan.

Friday, 8 March 13

Why not re-architect?

• You might never finish

These were all real
concerns.

How do you persuade the other people in the company that
spending six months doing this is worth doing?

This is a start-up you really can’t spend six month navel gazing.
The company could go bust.

You need to have a compelling reason and a plan.

Friday, 8 March 13

Why not re-architect?

• You might never finish

These were all real
concerns.

• You might not achieve the benefits

How do you persuade the other people in the company that
spending six months doing this is worth doing?

This is a start-up you really can’t spend six month navel gazing.
The company could go bust.

You need to have a compelling reason and a plan.

Friday, 8 March 13

Why not re-architect?

• You might never finish

These were all real
concerns.

• You might not achieve the benefits

• It might be easier to rewrite

How do you persuade the other people in the company that
spending six months doing this is worth doing?

This is a start-up you really can’t spend six month navel gazing.
The company could go bust.

You need to have a compelling reason and a plan.

Friday, 8 March 13

Why not re-architect?

• You might never finish

These were all real
concerns.

• You might not achieve the benefits

• It might be easier to rewrite

• The new architecture might not be better
than the old one

How do you persuade the other people in the company that
spending six months doing this is worth doing?

This is a start-up you really can’t spend six month navel gazing.
The company could go bust.

You need to have a compelling reason and a plan.

Friday, 8 March 13

Collaboration!
How did we know what
cut and what to keep.
iPhone.

Why what things are called?
Shared vocabulary, every one in the company
calls the same thing by the same name.

This will become important later on, in the
development of the application.

And actually this process of identifying, cutting or adding features,
choosing names and prioritising work is iterative. Each step of the
way this process is repeated.

Friday, 8 March 13

Collaboration!

• Software is built by a team

How did we know what
cut and what to keep.
iPhone.

Why what things are called?
Shared vocabulary, every one in the company
calls the same thing by the same name.

This will become important later on, in the
development of the application.

And actually this process of identifying, cutting or adding features,
choosing names and prioritising work is iterative. Each step of the
way this process is repeated.

Friday, 8 March 13

Collaboration!

• Software is built by a team

How did we know what
cut and what to keep.
iPhone.

• Not just a team of programmers

Why what things are called?
Shared vocabulary, every one in the company
calls the same thing by the same name.

This will become important later on, in the
development of the application.

And actually this process of identifying, cutting or adding features,
choosing names and prioritising work is iterative. Each step of the
way this process is repeated.

Friday, 8 March 13

Collaboration!

• Software is built by a team

How did we know what
cut and what to keep.
iPhone.

• Not just a team of programmers

• You need to agree on what can be cut

Why what things are called?
Shared vocabulary, every one in the company
calls the same thing by the same name.

This will become important later on, in the
development of the application.

And actually this process of identifying, cutting or adding features,
choosing names and prioritising work is iterative. Each step of the
way this process is repeated.

Friday, 8 March 13

Collaboration!

• Software is built by a team

How did we know what
cut and what to keep.
iPhone.

• Not just a team of programmers

• You need to agree on what can be cut

• What is the minimum feature set needed

Why what things are called?
Shared vocabulary, every one in the company
calls the same thing by the same name.

This will become important later on, in the
development of the application.

And actually this process of identifying, cutting or adding features,
choosing names and prioritising work is iterative. Each step of the
way this process is repeated.

Friday, 8 March 13

Collaboration!

• Software is built by a team

How did we know what
cut and what to keep.
iPhone.

• Not just a team of programmers

• You need to agree on what can be cut

• What is the minimum feature set needed

• What things are called
Why what things are called?
Shared vocabulary, every one in the company
calls the same thing by the same name.

This will become important later on, in the
development of the application.

And actually this process of identifying, cutting or adding features,
choosing names and prioritising work is iterative. Each step of the
way this process is repeated.

Friday, 8 March 13

What we settled on
Which is kind of boring, but, how you get from one to the
other is more interesting.

And doing it in a reasonable amount of time and without
breaking the existing site and not doing a big bang release is a
challenge.

We decided early on that moving to the new architecture
would be done in a stepwise fashion. With the refactoring and
splitting of the functions one page at a time.

We had a pages that were functionally quite distinct. And if
you want to do this step by step you need a unit you can use
to measure progress and divide up the work.

I should emphasise this was not handed down on graven
tablets by the development team, we arrived here by
explaining why this was the best option.

Friday, 8 March 13

What we settled on

• Services Which is kind of boring, but, how you get from one to the
other is more interesting.

And doing it in a reasonable amount of time and without
breaking the existing site and not doing a big bang release is a
challenge.

We decided early on that moving to the new architecture
would be done in a stepwise fashion. With the refactoring and
splitting of the functions one page at a time.

We had a pages that were functionally quite distinct. And if
you want to do this step by step you need a unit you can use
to measure progress and divide up the work.

I should emphasise this was not handed down on graven
tablets by the development team, we arrived here by
explaining why this was the best option.

Friday, 8 March 13

What we settled on

• Services

• And Clients

Which is kind of boring, but, how you get from one to the
other is more interesting.

And doing it in a reasonable amount of time and without
breaking the existing site and not doing a big bang release is a
challenge.

We decided early on that moving to the new architecture
would be done in a stepwise fashion. With the refactoring and
splitting of the functions one page at a time.

We had a pages that were functionally quite distinct. And if
you want to do this step by step you need a unit you can use
to measure progress and divide up the work.

I should emphasise this was not handed down on graven
tablets by the development team, we arrived here by
explaining why this was the best option.

Friday, 8 March 13

So far, so conventional

Friday, 8 March 13

What a service
looks like We actually started with

dummy services where we
implemented the interface
to the service inside the
application.

Active record leaks up the

Worth noting our services don’t have versioning, access control or XML. And that we do not need
to maintain backwards compatibility, since we control all the clients. (at least for now)

And they are kind of REST. Not real, phd level REST, but certainly popular, Rails-developer style
REST.

Friday, 8 March 13

What a service
looks like We actually started with

dummy services where we
implemented the interface
to the service inside the
application.

Active record leaks up the • Sinatra application

Worth noting our services don’t have versioning, access control or XML. And that we do not need
to maintain backwards compatibility, since we control all the clients. (at least for now)

And they are kind of REST. Not real, phd level REST, but certainly popular, Rails-developer style
REST.

Friday, 8 March 13

What a service
looks like We actually started with

dummy services where we
implemented the interface
to the service inside the
application.

Active record leaks up the • Sinatra application

• Emits JSON over HTTP

Worth noting our services don’t have versioning, access control or XML. And that we do not need
to maintain backwards compatibility, since we control all the clients. (at least for now)

And they are kind of REST. Not real, phd level REST, but certainly popular, Rails-developer style
REST.

Friday, 8 March 13

What a service
looks like We actually started with

dummy services where we
implemented the interface
to the service inside the
application.

Active record leaks up the • Sinatra application

• Emits JSON over HTTP

• Accepts form encoded or JSON data over HTTP

Worth noting our services don’t have versioning, access control or XML. And that we do not need
to maintain backwards compatibility, since we control all the clients. (at least for now)

And they are kind of REST. Not real, phd level REST, but certainly popular, Rails-developer style
REST.

Friday, 8 March 13

What a service
looks like We actually started with

dummy services where we
implemented the interface
to the service inside the
application.

Active record leaks up the • Sinatra application

• Emits JSON over HTTP

• Accepts form encoded or JSON data over HTTP

• Completely internally encapsulated

Worth noting our services don’t have versioning, access control or XML. And that we do not need
to maintain backwards compatibility, since we control all the clients. (at least for now)

And they are kind of REST. Not real, phd level REST, but certainly popular, Rails-developer style
REST.

Friday, 8 March 13

What a client
application looks like

Pages are ruby classes
that model what a pages
behaviour should be

Friday, 8 March 13

What a client
application looks like
• Rails application (so far any way)

Pages are ruby classes
that model what a pages
behaviour should be

Friday, 8 March 13

What a client
application looks like
• Rails application (so far any way)

• Has a traditional ‘MVC’ structure

Pages are ruby classes
that model what a pages
behaviour should be

Friday, 8 March 13

What a client
application looks like
• Rails application (so far any way)

• Has a traditional ‘MVC’ structure

• Gets all its data from services

Pages are ruby classes
that model what a pages
behaviour should be

Friday, 8 March 13

What a client
application looks like
• Rails application (so far any way)

• Has a traditional ‘MVC’ structure

• Gets all its data from services

• We added ‘pages’, ‘components’ and
‘elements’

Pages are ruby classes
that model what a pages
behaviour should be

Friday, 8 March 13

How it fits together
What is a page?

Why add pages?

What are components?

What are elements?

Benefits?

What makes a component?
A self contained unit on the page
normally you can draw a box
around it and give it a name.

Arbitrarily components cannot be
nested.

What makes an element? Are
common functionality shared
between components.

Friday, 8 March 13

How it fits together

• A Page

What is a page?

Why add pages?

What are components?

What are elements?

Benefits?

What makes a component?
A self contained unit on the page
normally you can draw a box
around it and give it a name.

Arbitrarily components cannot be
nested.

What makes an element? Are
common functionality shared
between components.

Friday, 8 March 13

How it fits together

• A Page

• Is made of components

What is a page?

Why add pages?

What are components?

What are elements?

Benefits?

What makes a component?
A self contained unit on the page
normally you can draw a box
around it and give it a name.

Arbitrarily components cannot be
nested.

What makes an element? Are
common functionality shared
between components.

Friday, 8 March 13

How it fits together

• A Page

• Is made of components

• Some components are composed of
elements

What is a page?

Why add pages?

What are components?

What are elements?

Benefits?

What makes a component?
A self contained unit on the page
normally you can draw a box
around it and give it a name.

Arbitrarily components cannot be
nested.

What makes an element? Are
common functionality shared
between components.

Friday, 8 March 13

Friday, 8 March 13

Layers
(it’s all about layers)

Event pages need a venue
and an artist and an
event

Artist pages have an
artist + calendar and
media (see etc)

Users are User +
calendar

Components

Artist Page User Page Venue PageEvent Page

Pages

Event Artist UserCalendar Venue Etc …

Models

Accounts NotificationsCaltrakEvent listings Etc …

Services

Services here are classes
in the client. They talk to
the network and handle
passing the data up to
the models and dat from
the models out to the
network

Friday, 8 March 13

So how does all this
work in practice?

Friday, 8 March 13

So how does all this
work in practice?

• The client is still a rails app with the familiar
rails layout

Friday, 8 March 13

So how does all this
work in practice?

• The client is still a rails app with the familiar
rails layout

• Anywhere a rails app might talk to a data
store, the app talks to a service instead

Friday, 8 March 13

So how does all this
work in practice?

• The client is still a rails app with the familiar
rails layout

• Anywhere a rails app might talk to a data
store, the app talks to a service instead

• And we have added some conventions

Friday, 8 March 13

Components are self
contained. Each component has
a name and takes an object.

The object contains the data
the component needs and any
decision making is provided by
methods on that object.

The name of the component is
also the name of the template
file on disc, the html class name
and the name of its
corresponding css and
javascript files.

This tight convention around
names makes understanding the
dependancy between a

The conventions

Every page having a css
file does mean you get
some repetition, but, the
confidence it gives you
about where changes
will appear makes it well
worth it.

The css file imports
smaller files with shared
styling

Friday, 8 March 13

• Every Page has a type

Components are self
contained. Each component has
a name and takes an object.

The object contains the data
the component needs and any
decision making is provided by
methods on that object.

The name of the component is
also the name of the template
file on disc, the html class name
and the name of its
corresponding css and
javascript files.

This tight convention around
names makes understanding the
dependancy between a

The conventions

Every page having a css
file does mean you get
some repetition, but, the
confidence it gives you
about where changes
will appear makes it well
worth it.

The css file imports
smaller files with shared
styling

Friday, 8 March 13

• Every Page has a type

• Every page has one CSS file

Components are self
contained. Each component has
a name and takes an object.

The object contains the data
the component needs and any
decision making is provided by
methods on that object.

The name of the component is
also the name of the template
file on disc, the html class name
and the name of its
corresponding css and
javascript files.

This tight convention around
names makes understanding the
dependancy between a

The conventions

Every page having a css
file does mean you get
some repetition, but, the
confidence it gives you
about where changes
will appear makes it well
worth it.

The css file imports
smaller files with shared
styling

Friday, 8 March 13

• Every Page has a type

• Every page has one CSS file

• The CSS file has the same name as the page
type

Components are self
contained. Each component has
a name and takes an object.

The object contains the data
the component needs and any
decision making is provided by
methods on that object.

The name of the component is
also the name of the template
file on disc, the html class name
and the name of its
corresponding css and
javascript files.

This tight convention around
names makes understanding the
dependancy between a

The conventions

Every page having a css
file does mean you get
some repetition, but, the
confidence it gives you
about where changes
will appear makes it well
worth it.

The css file imports
smaller files with shared
styling

Friday, 8 March 13

• Every Page has a type

• Every page has one CSS file

• The CSS file has the same name as the page
type

• Every component has a corresponding CSS
file

Components are self
contained. Each component has
a name and takes an object.

The object contains the data
the component needs and any
decision making is provided by
methods on that object.

The name of the component is
also the name of the template
file on disc, the html class name
and the name of its
corresponding css and
javascript files.

This tight convention around
names makes understanding the
dependancy between a

The conventions

Every page having a css
file does mean you get
some repetition, but, the
confidence it gives you
about where changes
will appear makes it well
worth it.

The css file imports
smaller files with shared
styling

Friday, 8 March 13

• Every Page has a type

• Every page has one CSS file

• The CSS file has the same name as the page
type

• Every component has a corresponding CSS
file

• If it needs it the component also has a
javascript file

Components are self
contained. Each component has
a name and takes an object.

The object contains the data
the component needs and any
decision making is provided by
methods on that object.

The name of the component is
also the name of the template
file on disc, the html class name
and the name of its
corresponding css and
javascript files.

This tight convention around
names makes understanding the
dependancy between a

The conventions

Every page having a css
file does mean you get
some repetition, but, the
confidence it gives you
about where changes
will appear makes it well
worth it.

The css file imports
smaller files with shared
styling

Friday, 8 March 13

A little bit of code

This is of cause in ruby
but that hardly matters.

Friday, 8 March 13

A little bit of code

This is of cause in ruby
but that hardly matters.

skweb/
 app/
 controllers/
 venues_controller.rb
 models/
 page_models/
 venue.rb
 skweb/
 models/
 venue.rb
 views/
 venues/
 _brief.html.erb
 show.html.erb
 public/
 javascripts/
 songkick/
 component/
 tickets.js
 stylesheets/
 components/
 venue-brief.css
 shared/
 components/
 brief.css
 venue.css

Friday, 8 March 13

A little bit of code

This is of cause in ruby
but that hardly matters.

skweb/
 app/
 controllers/
 venues_controller.rb
 models/
 page_models/
 venue.rb
 skweb/
 models/
 venue.rb
 views/
 venues/
 _brief.html.erb
 show.html.erb
 public/
 javascripts/
 songkick/
 component/
 tickets.js
 stylesheets/
 components/
 venue-brief.css
 shared/
 components/
 brief.css
 venue.css

class VenuesController < ApplicationController
 def show
 @page = PageModels::Venue.new(venue,
logged_in_user)
 end
end

Friday, 8 March 13

A little bit of code

This is of cause in ruby
but that hardly matters.

skweb/
 app/
 controllers/
 venues_controller.rb
 models/
 page_models/
 venue.rb
 skweb/
 models/
 venue.rb
 views/
 venues/
 _brief.html.erb
 show.html.erb
 public/
 javascripts/
 songkick/
 component/
 tickets.js
 stylesheets/
 components/
 venue-brief.css
 shared/
 components/
 brief.css
 venue.css

class VenuesController < ApplicationController
 def show
 @page = PageModels::Venue.new(venue,
logged_in_user)
 end
end

module PageModels
 class Venue < PageModels::Base
 def brief
 Brief.new(@venue, upcoming_events.total_entries,
@logged_in_user)
 end
 end
end

Friday, 8 March 13

A little bit of code

This is of cause in ruby
but that hardly matters.

skweb/
 app/
 controllers/
 venues_controller.rb
 models/
 page_models/
 venue.rb
 skweb/
 models/
 venue.rb
 views/
 venues/
 _brief.html.erb
 show.html.erb
 public/
 javascripts/
 songkick/
 component/
 tickets.js
 stylesheets/
 components/
 venue-brief.css
 shared/
 components/
 brief.css
 venue.css

class VenuesController < ApplicationController
 def show
 @page = PageModels::Venue.new(venue,
logged_in_user)
 end
end

module PageModels
 class Venue < PageModels::Base
 def brief
 Brief.new(@venue, upcoming_events.total_entries,
@logged_in_user)
 end
 end
end

module PageModels
 class Venue
 class Brief
 def geolocation
 @venue.geolocation
 end
 end
 end
end

Friday, 8 March 13

Moving to the view
component() and
shared_component()
are defined in
ApplicationHelper and
look like this:

Friday, 8 March 13

Moving to the view
<div class="primary col">
 <%= component('brief', @page.brief) %>
 <%= component('map', @page.brief.geolocation) %>
 <%= shared_component('calendar_summary', @page.calendar_summary) %>
 <%= shared_component('media_summary', @page.media_summary) %>
 <%= shared_component('media_links', @page.media_links) %>
 <%= shared_component('gigography_summary', @page.gigography_summary) %>
</div>

component() and
shared_component()
are defined in
ApplicationHelper and
look like this:

Friday, 8 March 13

Moving to the view
<div class="primary col">
 <%= component('brief', @page.brief) %>
 <%= component('map', @page.brief.geolocation) %>
 <%= shared_component('calendar_summary', @page.calendar_summary) %>
 <%= shared_component('media_summary', @page.media_summary) %>
 <%= shared_component('media_links', @page.media_links) %>
 <%= shared_component('gigography_summary', @page.gigography_summary) %>
</div>

component() and
shared_component()
are defined in
ApplicationHelper and
look like this:

def component(component_name, object)
 return '' if object.nil?
 render :partial => component_name, :object => object
end

def shared_component(component_name, object)
 component("shared/components/#{component_name}", object)
end

Friday, 8 March 13

Moving to the view
<div class="primary col">
 <%= component('brief', @page.brief) %>
 <%= component('map', @page.brief.geolocation) %>
 <%= shared_component('calendar_summary', @page.calendar_summary) %>
 <%= shared_component('media_summary', @page.media_summary) %>
 <%= shared_component('media_links', @page.media_links) %>
 <%= shared_component('gigography_summary', @page.gigography_summary) %>
</div>

component() and
shared_component()
are defined in
ApplicationHelper and
look like this:

def component(component_name, object)
 return '' if object.nil?
 render :partial => component_name, :object => object
end

def shared_component(component_name, object)
 component("shared/components/#{component_name}", object)
end

@import 'shared/components/brief.css';
@import 'components/venue-brief.css';
@import 'components/venue-map.css';
@import 'shared/components/media-summary.css';
@import 'shared/components/event-listings.css';

Friday, 8 March 13

What did this give us

I’d hoped to have a graph showing
improved page response times, but
unfortunately we didn’t keep them

Many of our services can be scaled
horizontally mean at lest in the medium
term we can increase capacity by adding
nodes

The compartmentalisation of the
application.

The independence of the services means
parallelising development is simpler.

Knowing where to add functionality is
easier.

Friday, 8 March 13

What did this give us

• Developer productivity was radically improved

I’d hoped to have a graph showing
improved page response times, but
unfortunately we didn’t keep them

Many of our services can be scaled
horizontally mean at lest in the medium
term we can increase capacity by adding
nodes

The compartmentalisation of the
application.

The independence of the services means
parallelising development is simpler.

Knowing where to add functionality is
easier.

Friday, 8 March 13

What did this give us

• Developer productivity was radically improved

• Application performance was much better

I’d hoped to have a graph showing
improved page response times, but
unfortunately we didn’t keep them

Many of our services can be scaled
horizontally mean at lest in the medium
term we can increase capacity by adding
nodes

The compartmentalisation of the
application.

The independence of the services means
parallelising development is simpler.

Knowing where to add functionality is
easier.

Friday, 8 March 13

A leaner code base

• Before After

• 3.5MB 1.4MB ./app

• 1.8MB 744KB ./features

• 1.2MB 724KB ./spec

Friday, 8 March 13

Faster Builds
Before

• Over an hour

• Parallelized with 1 local and 10 ec2 instances

After

• 10 minutes

• 1 local machine

Friday, 8 March 13

Weekly visits
Visits

Songkick 2 launched
9 June 2009

Christmas

2008 2009 2010 2011 2012 2013

Started
rearchitecture

Finished
rearchitecture

A time line of how our
traffic has grown.

Traffic grew all threw
2010 we were adding
features, iterating madly
to improve conversion
and user engagement.

Friday, 8 March 13

Releases per month

0

25

50

75

100

125

150

Mar 2011 Aug 2011 Nov 2011 Feb 2012 May 2012 Aug 2012 Nov 2012

Just to prove we were
shipping more once we
finished the product.

Friday, 8 March 13

