
Hotspot Garbage Collection - The Useful Parts

Martijn Verburg (@karianna)

Session Code: 1500

1Thursday, 7 March 13

Session Code: 1500

Who am I?

• aka "The Diabolical Developer"
– I cause trouble in the Java/JVM and F/OSS worlds
– Especially Agile/Scrum/SC BS

• CTO of jClarity
– Java Performance Tooling start-up
– "Measure don't guess"

• Co-lead London Java Community (LJC)
– Run global programmes to work on OpenJDK & Java EE
– Adopt-a-JSR and Adopt OpenJDK
– Community night tomorrow night!

2Thursday, 7 March 13

Session Code: 1500

What I'm going to cover

• Part I - Diving into the Dark (~30 min)
– GC Theory
– Hotspot memory organisation and collectors

• Break! (2 min)
– Our brains hurt

• Part II - Shining a light into the Darkness (8 min)
– Reading GC Logs
– Tooling and Basic Data

• Part III - Real World Scenarios (8 min)
– Likely Memory Leaks
– Premature Promotion
– Healthy App
– High Pausing

3Thursday, 7 March 13

Session Code: 1500

What I'm not covering

• G1 Collector
– It's supported in production now
– Not a lot of good independent empirical research on this

• JRockit, Azul Zing, IBM J9 etc
– Sorry, these warrant their own talks
– Go see Azul on level 3 though, what they do is... cool.

• PhD level technical explanations
– I want you to have a working understanding

• Reality: I'm not that smart
– Going for that PhD? See me after

4Thursday, 7 March 13

Session Code: 1500

5Thursday, 7 March 13

Session Code: 1500

Search for Garbage Collection..

6Thursday, 7 March 13

Session Code: 1500

7Thursday, 7 March 13

Session Code: 1500

Part I - Diving into the Dark

• What is Garbage Collection (GC)?

• Hotspot Memory Organisation

• Collector Types

• Young Collectors

• Old Collectors

• Full GC

8Thursday, 7 March 13

Session Code: 1500

What is Garbage Collection (GC)?

• The freeing of memory that is no longer "live"
– Otherwise known as "collecting dead objects"

• Which is a misnomer

• GC is typically executed by a managed runtime

• Javascript, Python, Ruby, .NET CLR all have GC

9Thursday, 7 March 13

Session Code: 1500

And so does Java!

• One of the main 'selling' points in its early life

10Thursday, 7 March 13

Session Code: 1500

Why should I care?

• Hotspot just sorts this out doesn't it?

• Just set -Xms and -Xmx to be == right?
– Stab myself in the eye with a fork

• A poorly tuned GC can lead to:
– High pause times / high % of time spent pausing
– OutOfMemoryError

• It's usually worth tuning the GC!
– "Cheap" performance gain
– Especially in the short to medium term

11Thursday, 7 March 13

Session Code: 1500

Hotspot Java Virtual Machine

• Hotspot is a C/C++/Assembly app
– Native code for different platforms
– Roughly made up of Stack and Heap spaces

• The Java Heap
– A Contiguous block of memory
– Entire space is reserved
– Only some space is allocated
– Broken up into different memory pools

• Object Creation / Removal
– Objects are created by application (mutator) threads
– Objects are removed by Garbage Collection

12Thursday, 7 March 13

Session Code: 1500

Memory Pools

• Young Generation Pools
– Eden
– Survivor 0
– Survivor 1

• Old Generation Pool (aka Tenured)
– Typically much larger than young gen pools combined

• PermGen Pool
– Held separately to the rest of the Heap
– Was intended to hold objects that last a JVM lifetime

• Reloading and recycling of classes occurs here.
– Going away in Java 8

13Thursday, 7 March 13

Session Code: 1500

Java Heap Layout

Copyright - Oracle Corporation

14Thursday, 7 March 13

Session Code: 1500

Weak Generational Hypothesis

Copyright - Oracle Corporation

15Thursday, 7 March 13

Session Code: 1500

Only the good die young...

16Thursday, 7 March 13

Session Code: 1500

Copy

• aka "stop-and-copy"
– Some literature talks about "Cheney's algorithm"

• Used in many managed runtimes
– Including Hotspot

• GC thread(s) trace from root(s) to find live objects

• Typically involves copying live objects
– From one space to another space in memory
– The result typically looks like a move as opposed to a copy

17Thursday, 7 March 13

Session Code: 1500

Mark and Sweep

• Used by many modern collectors
– Including Hotspot, usually for old generational collection

• Typically 2 mandatory and 1 optional step(s)
1.Find live objects (mark)
2.'Delete' dead objects (sweep)
3.Tidy up - optional (compact)

18Thursday, 7 March 13

Session Code: 1500

Mark and Sweep collectors in Hotspot

• Several Hotspot collectors use Mark and Sweep
– Concurrent Mark and Sweep (CMS)
– Incremental Concurrent Mark and Sweep (iCMS)
– MarkSweepCompact (aka Serial)
– PS MarkSweep (aka ParallelOld)

• So it's worth learning the theory

19Thursday, 7 March 13

Session Code: 1500

Java objects

• Java objects have Ordinary Object Pointers (OOPs)
– That point to an object...
– Which points to the header

• The header contains a mark bit for GC
– Plus other metadata (hashcodes, locking state etc)

• When you call a constructor
– Space for the object is allocated

20Thursday, 7 March 13

Session Code: 1500

Step 1 - Clear the Mark

• The header contains the boolean mark field
– If true --> the object is live

• Step 1 - set all the mark fields to false
– We need to start afresh

21Thursday, 7 March 13

Session Code: 1500

Step 2 - Mark live objects

• GC Roots
– A pointer to data in the heap that you need to keep

Copyright - Michael Triana

22Thursday, 7 March 13

Session Code: 1500

Step 2 - Mark live objects

• GC Roots are made up of:
– Live threads
– Objects used for synchronisation
– JNI handles
– The system class loaders
– Possibly other things depending on your JVM

• Plus one more special case...

23Thursday, 7 March 13

Session Code: 1500

Step 2 - Mark live objects

• Special case - Old Gen refs into Young Gen
– Treated as roots during a young collection

• Special card table to track these
– Each card references an area of 512 bytes in old gen
– If it references young gen it will have been marked as dirty
– Dirty areas are scanned as part of the young collection

• Conclusion - there's a lot to trace!

24Thursday, 7 March 13

Session Code: 1500

Step 3 - Sweep

• Sweep
– Mark space that dead objects occupy as deleted

• Compact
– Not part of the normal operation of some collectors
– Always attempted before OOME's can be thrown
– 'Defrags' the remaining space

• Not quite a full defrag

• I'll cover some Java specific collectors shortly

25Thursday, 7 March 13

Session Code: 1500

Heap of Fish Demo

26Thursday, 7 March 13

Session Code: 1500

Young Generation Pools

• Eden
– Where new objects should get created
– Objects are added at the end of currently allocated block
– Uses Thread Local Allocation Buffers (TLABs)

• Points at end of allocated block of objects

• Survivor 0 and Survivor 1
– Known as Hemispheric GC
– Only one is active at a time
– The other one is empty, we call it the target space

27Thursday, 7 March 13

Session Code: 1500

Young Generation Collectors

• When Eden gets "full"
– "Full" is technically passing a threshold
– A collector will run

• Live objects get copied to the target Survivor space
– From Eden and active Survivor space

• Some Live objects are promoted to Old Gen
– If they've survived > tenuringThreshold collections
– Or if they can't fit in the target space

• When the collector is finished
– A simple pointer swizzle activates the target Survivor space
– Dead objects effectively disappear (no longer referenced)

28Thursday, 7 March 13

Session Code: 1500Copyright chaoticjava.com

29Thursday, 7 March 13

Session Code: 1500

Young Generation Collectors

• Most use parallel threads
– i.e. A multi-core machine can make your GC faster

• I'll cover the PS Scavenge and ParNew collectors
– They're almost identical
– PS Scavenge works with PS MarkSweep old gen
– ParNew works with ConcurrentMarkSweep (CMS) old gen

• Other young collectors:
– Copy (aka Serial)
– G1

30Thursday, 7 March 13

Session Code: 1500

PS Scavenge / ParNew

• aka "Throughput collectors"

• Number of threads is set as a ratio to # of cores

• They're Stop-The-World (STW) collectors
– They're monolithic (as opposed to incremental)

• Each thread gets a set of GC roots
– They do work stealing

• It performs an copy (aka evacuate)
– Surviving objects move to the newly active survivor pool

31Thursday, 7 March 13

Session Code: 1500

Age and Premature Promotion

• Objects have an age

• Every time they survive a collection..
– age++

• At age > tenuringThreshold
– Objects get moved (promoted) to old/tenured space
– Default tenuringThreshold is 4

• Premature Promotion occurs when
– High memory pressure (high life over death ratio)

• Eden is too small to deal with rate of new objects
– Objects are too big to fit in Eden
– Objects are too big to be promoted to Survivor spaces

32Thursday, 7 March 13

Session Code: 1500

Demo

33Thursday, 7 March 13

Session Code: 1500

Old Generation Collectors

• Most are variations on Mark and Sweep

• Most use parallel threads
– e.g. A multi-core machine can make your GC faster

• I'll cover PS MarkSweep & CMS
– CMS is often paired with the ParNew young collector

• Other old collectors:
– MarkSweepCompact (aka Serial)
– Incremental CMS (iCMS)
– G1

34Thursday, 7 March 13

Session Code: 1500

PS MarkSweep

• aka "ParallelOld"
– Often paired with PS Scavenge for young gen

• Parallel GC threads get sections to look after
– Usual Mark and Sweep occur

• Special Compact phase takes place
– low occupancy sections get merged
– e.g. A compact / defrag operation

35Thursday, 7 March 13

Session Code: 1500

CMS Old Gen Collector

• Only runs when Tenured is about to get full
– Tunable as to what 'about to get full' means

• Attempts to share CPU with application
– About a 50/50 ratio as a default
– Application can keep working whilst GC is taking place

• It's a partial Stop-The-World (STW) collector
– It has 6 phases

• 2 STW
• 4 Concurrent

• It does not compact unless it fails..

36Thursday, 7 March 13

Session Code: 1500

CMS Phases

• Phase 1 - Initial Mark (STW)
– Marks objects adjacent to GC roots

• Phase 2 - Mark (Concurrent)
– Completes depth first marking

• Phase 3 - Pre Clean (Concurrent)
– Retraces the updated objects, finds dirty cards

• Phase 4 - Re Mark / Re Scan (STW)
– Hopefully a smaller graph traversal over dirty paths

• Phase 5/6 - Concurrent Sweep and Reset
– Sweep out dead objects and reset any data structures

37Thursday, 7 March 13

Session Code: 1500

Concurrent Mode Failure (CMF)

• Occurs when CMS can't complete 'in time'
– 'In time' meaning that tenured has filled up

• GC subsystem reverts to a Full GC at this point
– Basically ouch

38Thursday, 7 March 13

Session Code: 1500

Promotion Failure

• Occurs when objects can't be promoted into Tenured
– Often due to the Swiss Cheese nature of Old Gen

• Because CMS does not compact

• This will almost always happen.... eventually

• Triggers a Full GC
– Which compacts old space
– No more Swiss Cheese! For a short while...

39Thursday, 7 March 13

Session Code: 1500

Full GC

• Can be triggered by a number of causes
– A CMF from the CMS Collector
– Promotion Failure
– When tenured gets above a threshold
– System.gc()
– Remote System.gc() via RMI

• Runs a full STW collection
– Over Young and Old generational spaces
– Compacts as well

40Thursday, 7 March 13

Session Code: 1500

Special Case: OOME

41Thursday, 7 March 13

Session Code: 1500

Special Case: OOME

• 98%+ time is spent in GC

• < 2% of Heap is freed in a collection

• Allocating an object larger than heap

• Sometimes when the JVM can't spawn a new Thread

42Thursday, 7 March 13

Session Code: 1500

Part II - Shining a light into the dark

• Collector Flags ahoy

• Reading CMS Log records

• Tooling and basic data

43Thursday, 7 March 13

Session Code: 1500

'Mandatory' Flags

• -verbose:gc
– Get me some GC output

• -Xloggc:<pathtofile>
– Path to the log output, make sure you've got disk space

• -XX:+PrintGCDetails
– Minimum information for tools to help
– Replace -verbose:gc with this

• -XX:+PrintTenuringDistribution
– Premature promotion information

• -XX:+PrintGCApplicationStoppedTime

44Thursday, 7 March 13

Session Code: 1500

Basic Heap Sizing Flags

• -Xms<size>
– Set the minimum size reserved for the heap

• -Xmx<size>
– Set the maximum size reserved for the heap

• -XX:MaxPermSize=<size>
– Set the maximum size of your perm gen
– Good for Spring apps and App servers

45Thursday, 7 March 13

Session Code: 1500

Other Flags

• -XX:NewRatio=N

• -XX:NewSize=N

• -XX:MaxNewSize=N

• -XX:MaxHeapFreeRatio

• -XX:MinHeapFreeRatio

• -XX:SurvivorRatio=N

• -XX:MaxTenuringThreshold=N

•

46Thursday, 7 March 13

Session Code: 1500

More Flags than your Deity

Copyright Frank Pavageau

47Thursday, 7 March 13

Session Code: 1500

Why Log Files?

• Log file can be post processed

• Log files contain more information
– Than runtime MXBeans

• Runtime MXBeans impact the running application
– Causing it's own GC problems!

48Thursday, 7 March 13

Session Code: 1500

Raw GC Log File

49Thursday, 7 March 13

Session Code: 1500

WAT

50Thursday, 7 March 13

Session Code: 1500

General Format

51Thursday, 7 March 13

Session Code: 1500

Young Gen Collection Part I

52Thursday, 7 March 13

Session Code: 1500

Young Gen Collection Part II

53Thursday, 7 March 13

Session Code: 1500

CMS Initial Mark

54Thursday, 7 March 13

Session Code: 1500

All CMS

55Thursday, 7 March 13

Session Code: 1500

Tooling

• HPJMeter (Google it)
– Solid, but no longer supported / enhanced

• GCViewer (http://www.tagtraum.com/gcviewer.html)
– Has rudimentary G1 support

• GarbageCat (http://code.google.com/a/eclipselabs.org/p/garbagecat/)
– Best name

• IBM GCMV (http://www.ibm.com/developerworks/java/jdk/tools/gcmv/)
– J9 support

• jClarity Censum (http://www.jclartity.com/products/censum)
– The prettiest and most useful, but we're biased!

56Thursday, 7 March 13

http://www.tagtraum.com/gcviewer.html
http://www.tagtraum.com/gcviewer.html
http://code.google.com/a/eclipselabs.org/p/garbagecat/
http://code.google.com/a/eclipselabs.org/p/garbagecat/
http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://www.jclartity.com/products/censum
http://www.jclartity.com/products/censum

Session Code: 1500

HPJMeter - Summary

57Thursday, 7 March 13

Session Code: 1500

HPJMeter - Heap Usage After GC

58Thursday, 7 March 13

Session Code: 1500

Part III - Scenarios

• Possible Memory Leak(s)

• Premature Promotion

• Healthy Application

• High percentage of time spent pausing

59Thursday, 7 March 13

Session Code: 1500

A Memory Leak

60Thursday, 7 March 13

Session Code: 1500

A Possible Memory Leak - I

61Thursday, 7 March 13

Session Code: 1500

A Possible Memory Leak - II

62Thursday, 7 March 13

Session Code: 1500

Premature Promotion

63Thursday, 7 March 13

Session Code: 1500

Healthy Application

64Thursday, 7 March 13

Session Code: 1500

High Percentage of time Paused

65Thursday, 7 March 13

Session Code: 1500

Summary

• You need to understand some basic GC theory

• You want most objects to die young, in young gen

• Turn on GC logging!
– Reading raw log files is hard
– Use tooling!

• Use tools to help you tweak
– "Measure, don't guess"

66Thursday, 7 March 13

Join our performance community

http://www.jclarity.com

Martijn Verburg (@karianna)

67Thursday, 7 March 13

http://www.jclarity.com
http://www.jclarity.com

